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We consider propagation of surface plasmon polaritons in linear chains of equidistant metallic nanospheroids. We
show that, for suitably chosen parameters, the propagation is free of spatial decay in spite of the full account of
absorptive losses in the metal. © 2013 Optical Society of America
OCIS codes: (240.5420) Polaritons; (240.6680) Surface plasmons; (250.5530) Pulse propagation and temporal solitons;

(250.5403) Plasmonics.
http://dx.doi.org/10.1364/OL.38.004743

Propagation of surface plasmon polaritons (SPPs) in
chains of metallic particles has attracted significant
attention due to the number of potential applications
in waveguiding and nanoplasmonics [1–4], as well as
in spectroscopy and chemical sensing [5–7]. Chains of
nanoparticles have also attracted attention in quantum
information processing and it was recently demonstrated
that such chains can serve as unidirectional single-
photon or single-plasmon emitters [8]. In this Letter,
we investigate the spatial decay of SPPs in chains of
spheroidal particles and evaluate ways to mitigate this
decay by manipulating the aspect ratio of the particles.
SPPs (guided modes) are collective plasmonic excita-

tions that can propagate as well-formed wave packets [9]
in chains of metallic nanoparticles without radiative
losses (at least, in perfectly periodic linear arrays). In
[8], relatively short chains (nine nanoparticles total) were
considered and SPP decay due to Ohmic losses did not
play a significant role. In longer chains, which are the
subject of this Letter, spatial decay of SPPs is a critically
important factor. It is known that Ohmic losses in metal
can result in some attenuation. According to conven-
tional wisdom, Ohmic losses make the decay of SPPs
inevitable. However, this decay is not a consequence
of energy conservation or of any other fundamental
law. Below, we show that propagation of SPPs without
spatial decay is possible in chains of particles with suffi-
ciently small aspect ratios. As an example of such par-
ticles, we used spheroids. Of course, it is not possible
to manufacture nanoparticles in perfect spheroidal
shapes. However, the effect reported by us is not criti-
cally dependent on the manufacturing precision or on
the particle shape. What is important in our simulations
is the depolarization factor of a particle. This quantity is
well-defined as long as the particle possesses a dominat-
ing dipole resonance. A simple alternative example of
such a particle is a truncated cylinder of height H and
base radius R. This object has a single dominating dipole
resonance in the two limits H∕R ≪ 1 (nanodisk) and
H∕R ≫ 1 (nanoneedle). As will be discussed below,
these two cases are of special interest to us.

In the propagation regime discussed in this Letter, all
spheroids in the chain dissipate optical energy into heat
(at about the same rate), yet there is no spatial decay of
the SPPs. This result has not been noticed before, most
likely, because the majority of theoretical treatments of
the subject consider chains of spherical particles. We
note that recently described [10] undamped SPPs in
chains of nanospheres are probably similar to what we
have termed “extraordinary” SPPs, which indeed propa-
gate with only slow algebraic decay, but only after an
initial precipitous drop of the amplitude (by a few orders
of magnitude) [11].

We will provide a few numerical examples to support
the above claim. We work in the frequency domain and
the time-dependence factor exp�−iωt� is suppressed
throughout. Consider a linear periodic chain of identical
silver spheroids characterized by the eccentricity factor
e �

����������������������
1 − �b∕a�2

p
(b ≤ a), where b and a are the shorter

and longer semi-axes. The spheroids can be either pro-
late or oblate, and we assume that the longer semi-axis
is perpendicular to the chain in both cases. We will con-
sider only the SPPs that are polarized transversely to the
chain. For oblate spheroids, the two mutually orthogonal
transverse polarizations are equivalent. However, this is
not so for prolate spheroids. In the latter case, we will
consider only the polarization aligned with the longer
axis. In all cases, the shorter semi-axis is taken to be
b � 8 nm and the center-to-center interparticle distance
is taken to be h � 3b � 24 nm. Thus, the surface-to-
surface distance between two nearest neighbors in the
chain is equal to b. For transversely polarized SPPs, these
parameters are within the range of validity of the dipole
approximation, which will be used in all simulations.

The principal values of the polarizability tensor of each
spheroid are given by α � �α−1LL − 2ik3∕3�−1, where αLL is
quasi-static Lorentz–Lorenz polarizability of a spheroid
and the term −2ik3∕3 is the first nonvanishing radiative
correction [12]. The former is defined by

αLL � �apb3−p∕3��ν� 1∕�ϵ − 1��−1: (1)
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Here, ϵ is the dielectric permittivity of spheroids at the
working frequency ω, k � ω∕c is the free space wave
number, p � 1 for prolate spheroids, p � 2 for oblate
spheroids, and ν is the appropriate depolarization
factor. We now introduce the following notations: for
the spatial direction aligned with the spheroid axis
of symmetry (the longer or shorter axis for prolate or
oblate spheroids, respectively), we write ν � ν∥ and
for either of the two linearly independent transverse
polarizations, ν � ν⊥. Then, in the case of prolate
spheroids, we can use the formula ν⊥ � �1 − ν∥�∕2,
where ν∥ � g2�e���1∕2e� ln��1� e�∕�1 − e�� − 1�. In the
case of oblate spheroids, we can use ν∥ � 1–2ν⊥, where
ν⊥ � �g�e�∕2e2��π∕2 − arctan g�e�� − g2�e�∕2. In these
expressions, g�e� �

������������������
1∕e2 − 1

p
.

We also need to define the dielectric permittivity ϵ,
which appears in Eq. (1). To this end, we use the Drude
formula ϵ � ϵ0 − ω2

p∕ω�ω� iγ�, where ωp is the plasma
frequency, γ is the relaxation constant, and ϵ0 − 1 is
the contribution to the permittivity due to the interband
transitions. In numerical simulations, we use the param-
eters for silver, ωp∕γ � 526.3 and ϵ0 � 5.0.
We now turn to the transmission properties of chain

waveguides of finite length N . Assume that the first par-
ticle in the chain (n � 1) is illuminated by a near-field
external source, which creates a fixed and known
amplitude A of the electric field. We are interested in
the dipole moment amplitude of the last (n � N) particle
of the chain, which can be “read out”, for example, by a
near-field scanning optical microscope (NSOM) tip. We
will use the formalism of normalized Green’s function
[11], Fn � jDn;1∕D1;1j. Here, the Green’s function Dnm
gives the dipole moment dn of the nth spheroid due to
the localized external electric field incident on the mth
spheroid. In other words, if the external electric field
at the site rn (center of the nth spheroid) is given by
En � Aδnm, then dn � DnmA. The Green’s function
Dnm can be obtained in finite chains numerically by
solving the coupled-dipole equations [11]. Here we con-
sider finite chains and compute Dnm numerically by
direct inversion. We will refer to the quantity FN as
the transmission of the chain.
The spectral dependence of transmission for a chain

containing N � 1001 spheroids of different shapes and
eccentricities is illustrated in Fig. 1. It can be seen that
SPPs tend to propagate with less decay for smaller
values of b∕a (at a given amplitude of the external field,
A). This finding may be interesting, but the truly striking
results can be observed when 0.05 < ω∕ωp < 0.15 (for
prolate spheroids) or 0.05 < ω∕ωp < 0.25 (for oblate
spheroids), when the transmission FN is of the order
of unity. This result is obtained for b∕a � 0.2 in the case
of prolate spheroids and for b∕a ≤ 0.3 in the case of
oblate spheroids.
The above finding is unexpected and radically different

from the results previously obtained for chains of spheri-
cal particles. In all previous studies, the Green’s function
Dnm drops sharply with jn −mj if realistic losses are
taken into account. We illustrate this point in Fig. 2 by
plotting Fn as a function of n for chains constructed
of spheroids with b∕a � 0.2 and of spheres. The working
frequency is chosen to be ω � 0.15ωp for the case of

spheroids and ω � 0.38ωp for the case of spheres. This
choice is explained as follows. In the case of spheroids,
the dispersion curve is approximately linear when 0.05 <
ω∕ωp < 0.25 and the working frequency has been chosen
at the center of this interval (data not shown but see
qualitatively similar dispersion curves in [9]). In chains
of spheres, well-formed wave packets can not be created
at any frequency, and so we have chosen the working
frequency for which the decay of Fn is the slowest. Still,
it can be seen that, in the case of spheres, Fn drops
precipitously with n. The curves for spheroids exhibit
much slower decay, or no decay at all.

It may even seem that the data of Figs. 1,2 contradict
conservation of energy. However, this is not so. In our
simulations, the expected dissipation of optical energy
into heat occurs in each spheroid. Yet, this process does
not result in spatial decay of Dnm. How is this possible?
The answer to the above question becomes obvious if we

Fig. 1. Transmission spectra for transversely polarized SPPs
in chains built from prolate spheroids (a) and oblate spheroids
(b) for different aspect ratios b∕a.

Fig. 2. Normalized Green’s function Fn for linear chains
of spheroids with aspect ratio b∕a � 0.2 at the frequency
ω∕ωp � 0.15 and for a chain of spheres at ω∕ωp � 0.38.
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recall that, in the definition of the Green’s function Dnm,
we assume that the external field amplitude A is fixed
and independent of the actual distribution of dipoles
in the chain. When the decay of the Green’s function
is slow or absent, all spheroids dissipate energy approx-
imately at the same rate and, correspondingly, this
energy must be supplied by an external source. There-
fore, to maintain a given amplitude of the external field,
one must supply the system with the optical energy,
which is proportional to the length of the chain, N .
The physical situation is somewhat similar to the case
when N resistors are sequentially connected to an ideal
source of current. The power dissipated by each resistor
is in this case the same and independent of the number
of resistors. In this analogy, the external optical source of
fixed amplitude A plays the role of an ideal source
of current.
To better illustrate the above point, we now consider

the ratio of radiative energy loss to the total energy loss
in the system. Recall that, in an infinite chain, SPPs
propagate without radiative losses. In a finite chain, ra-
diative losses occur at both ends of the chain. The char-
acteristic parameter to consider is the quality factor
η � Qs∕Qe, where Qs and Qe are the efficiencies of scat-
tering and extinction. In terms of the dipole moments,
these quantities are defined as follows:

Qe �
4k

NR2 Im
X
n

dnE�
n

jAj2 � 4k

NR2 Im
d1A�

jAj2 ; (2a)

Qs �
8k4

3NR2

X
n

jdnj2
jAj2 : (2b)

Here, En represents the amplitudes of the external elec-
tric field at the center of the nth sphere and we have used
the expression En � Aδn1 to obtain the second equality in
Eq. (2a). R is an arbitrary constant of dimensionality of
length; its value does not affect η. Note that Qs is propor-
tional to the total optical energy scattered by the chain
into free space per unit time.
In Fig. 3, we plot η as a function of frequency for chains

of spheroids and spheres. For both prolate and oblate
spheroids, we have η ≈ 1∕N ≈ 10−3 at ω � 0.15ωp. For
spheres, the quality factor is approximately 50 time larger
at the same frequency. This indicates that, in the case of

spheroids, almost all energy supplied by the source is
absorbed and the absorption is equally divided between
the spheroids comprising the chain; hence, we see no
significant spatial decay of Fn.

The slow decay of SPPs reported above can be under-
stood in the framework of previously known theoretical
results. In [11], we have shown that the Green’s function
in an infinite chain can be found analytically by Fourier
transform and has the form

Dn0 �
Z

π∕h

−π∕h

exp�iqhn�
1∕α − S�ω; q�

hdq
2π

: (3)

In this expression, the illuminated particle is assumed
to be labeled asm � 0 and S�ω; q� is the dipole sum (self
energy). The detailed definition and plots of S�ω; q� are
given in [11]. Equation (4) can be used to estimate the
SPP propagation length, l. This can be done with the
use of the quasi-particle pole approximation. Namely,
we assume that the dominating input to the integral is
obtained in the small vicinity of the Bloch wave number
q1, which is the root of the equation Re�1∕α − S�ω; q�� � 0
(selected with the additional condition that q1 is not close
to the logarithmic singularity of S�ω; q�). The root q1 thus
determined is the Bloch wave number of the ordinary
SPP. The dipole sum is an analytical function of q in
the vicinity of q1 and it can be expanded in a Taylor
series. Note that the imaginary part of the denominator
is small and constant in the vicinity of q1. We then extend
the integration in Eq. (3) to the whole real axis using con-
tour integration to obtain the following expression:

l � 1
δ

����Re ∂S�ω; q�∂q

����
q�q1

; δ � −Im
1
αLL

: (4)

The data presented in this Letter are fully consistent
with the formula in Eq. (4). Indeed, for the polarizability
function defined by Eq. (1), we have

h3δ � 3�h∕b�3�b∕a�pγωω2
p

Ω4 � �ϵ0 − 1�2�γω�2 ; (5)

where Ω2 � �ϵ0 − 1�ω2
− ω2

p. For fixed h∕b, l can be in-
creased when (i) the frequency ω is decreased or (ii) the
aspect ratio b∕a is decreased while the ratio h∕b is fixed
(in this case, the dependence is stronger for oblate sphe-
roids). For spheroidal particles, resonance excitation can
occur only in close vicinity of the Frohlich frequency ωF ,
where ω2

F � �ν∕�1� �ϵ0 − 1�ν��ω2
p. For spherical particles,

ν � 1∕3 and the frequency of resonant excitation can
not be arbitrarily reduced while the spherical shape is
fixed. However, we can significantly reduce the resonant
frequency by utilizing spheroids with ν < 1∕3, and, simul-
taneously, achieve an additional gain in l due to the
increased factor �a∕b�p. For the parameters used in
Fig. 2, we can estimate l ≈ 44 μm (oblate spheroids),
l ≈ 9.1 μm (prolate spheroids), and l ≈ 0.6 μm (spheres).
These estimates are in a good agreement with the data
of Fig. 2. Note that the entire length of the chain
is L � h�N − 1�≃ 24 μm.

Fig. 3. Quality factor η � Qs∕Qe for chains of spheres and
spheroids with the aspect ratio b∕a � 0.2.
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We can also explain the phenomenon just discussed
from a physical point of view. We first note that replacing
spherical particles by spheroids increases the strength
of electromagnetic interaction of neighboring particles
because the coupling coefficients (polarizabilities) can
be increased while keeping the center-to-center distance
constant. This results in a significant increase of
the group velocity of SPPs, as was already predicted
in [9]. This phenomenon is analogous to the increase
of the velocity of sound in solids when the elastic modu-
lus is increased. Correspondingly, a wave packet (if we
consider the time-domain dynamics) spends less time
travelling from one end of the chain to another. If we
further assume that the amplitude of the wave packet
decays with time at a constant rate, then we can expect
a larger amplitude of the SPP at the far end of the chain.
Upon Fourier-transforming the SPP field into the fre-
quency domain, we find that the Green’s function decays
slower in chains with spheroidal particles. Another help-
ful factor is that the introduction of nonsphericity allows
one to shift the Frohlich frequency of the spheroids
toward the red, where metal nanoparticles are know
to be better (higher-quality) resonators.
We conclude that the use of nonspherical particles can

be advantageous for the design of nanoparticle wave-
guides. Gaussian SPP wave packets can propagate along
a chain of spheroids with negligible spatial decay. These
two features are desirable in many of the applications
considered in the literature. Unfortunately, this regime
of propagation requires large energy input (proportional
to the number of particles in the chain, N) and the frac-
tion of incident energy converted to the useful signal
scales as 1∕N . It is difficult to estimate the actual power
needed for reliable detection of wavepackets at the far
end of a given chain, since this estimate requires the
knowledge of the threshold incident power at which
the nanoparticles are destroyed and of the level of
electromagnetic noise at the detector. Overall, there

are many factors that influence waveguiding properties
of plasmonic chains. One such factor, which is practically
important but has been overlooked in the past, is the
particle nonsphericity.
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