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Abstract
We suggest a strategy for designing regular 2D arrays of nanoholes (NHs) in metal films with
far-field scattering properties similar to that of regular 2D arrays of nanodisks (NDs) with the
same periodicity. Full-wave simulations for perfectly conducting, Ag and Au NDs and
respectively designed arrays of NHs demonstrate a minor difference between far-field properties
either at wavelengths corresponding to Wood–Rayleigh anomalies of the arrays or in a broad
wavelength range, depending on the array periodicity and sizes of NDs (NHs). Our results have
broad implications in plasmon-enhanced-driven applications, including optoelectronic and
photovoltaic devices, where the NH arrays are preferable to be fabricated for nano-structured
optics.
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1. Introduction

Since the observation of extraordinary optical transmission
in arrays of holes in Ag films [1] and its further theoretical
[2] and experimental [3] elaboration, regular plasmonic nano-
structures exhibiting resonant optical properties have been
at the forefront of modern photonics. Arrays of nanoholes
(NHs) in metal films, easily manufactured via focused ion
beam milling [4, 5], soft interference lithography [6], ion-
beam planarization [7] or direct laser writing [8], have been
employed in sensing [9–16], upconversion luminescence [17],
lasing [18–20], focusing [5], photocatalysis [21], thermoplas-
monics [22, 23], filtering [24, 25], nonlinear optics [26],
hybrid [27] and plasmon-exciton [28] coupling. One of the
major drawback of NH arrays from the theoretical point of
view is the lack of closed-form analytical solutions for elec-
tromagnetic properties of such nanostructures: straightforward
treatment only exists for single NHs [29–32] or for NH arrays
perforated in perfect electric conductor (PEC) thin films. In the
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latter case, upon using analytical solutions for complementary
(i.e. with the same diameter) PEC disks [33–35] and imple-
menting the Babinet’s principle, one can interchange trans-
mittance and reflectance of disks and holes arrays: Td ↔ Rh
andRd ↔ Th. For realistic materials with losses, one inevitably
(except for the case of a single NH [36]) has to invoke time-
consuming full-field methods and brute-force simulations to
get optical properties of NHs perforated in metal films, which
does not provide almost any insights into the underlying phys-
ics. Nonetheless, the Babinet principle has inspired a num-
ber of works [4, 37–41] where complementary structures of
various configurations (holes/disks and far beyond) have been
designed with almost perfectly complementary electromag-
netic properties. Moreover, so-called ‘Babinet-type’ metasur-
faces with a simultaneous use of complementary holes and
disks have been suggested for cancelling out absorption and
increasing reflectance [42] or for highly tunable transmittance
[43, 44].

Unlike NHs, optical properties of regular arrays of metal
nanoparticles of different shapes (disks, spheres, hemispheres,
cones, pillars, mushrooms, crescents etc) can be intuitively
understood via closed-form analytical solutions [45]. For

1361-6463/22/455104+9$33.00 Printed in the UK 1 © 2022 IOP Publishing Ltd

https://doi.org/10.1088/1361-6463/ac8ffc
https://orcid.org/0000-0002-7956-1702
mailto:irasskaz@ur.rochester.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6463/ac8ffc&domain=pdf&date_stamp=2022-9-19


J. Phys. D: Appl. Phys. 55 (2022) 455104 I L Rasskazov et al

instance, optical properties of a single nanoparticle of almost
any shape can be nearly perfectly described within the
framework of the modified long-wavelength approximation
(MLWA) [46–51] which, being combined with the coupled
dipole approximation [52, 53], yield in results perfectly fitting
both full-wave simulations and experiments [54].

Seminal comparative ‘nanodisks↔nanoholes’ scenario
typically invokes the Babinet’s principle, and the main focus
is usually on complementary designed (disks and holes of the
same size) nanostructures with complementary optical proper-
ties (Td ≈ Rh and Rd ≈ Th). However, in this work we are inter-
ested in ‘nanodisks↔nanoholes’ scenario, where these arrays
exhibit similar properties: Td ≈ Th and Rd ≈ Rh. The motiv-
ation behind this interest is to bridge the gap between nano-
structures composed of NHs and nanoparticles. Indeed, with
existing simple and intuitively clear analytical solutions for
transmission, reflectance and absorption for nanoparticles, a
direct leap to NHs arrays with almost exactly the same prop-
erties may potentially facilitate a broader utilization of NHs
arrays and may serve as a useful design tool for their fabric-
ation. In what follows, we develop a strategy for designing
arrays of NHs with optical properties similar to that of nanod-
isks (NDs) in a broadband region, with almost exact matches
at wavelengths corresponding to Wood–Rayleigh anomalies
(WRAs) [55, 56] of arrays.

2. Results and discussion

Consider a regular 2D square array of metal NDs with dia-
meter Dd and height H arranged in a square lattice with pitch
P, as shown in figure 1(a). We suggest to design arrays of
NHs with diameter Dh and with the same pitch P as shown in
figure 1(c). Rather than follow the Babinet’s principle (i.e. set-
ting Dd = Dh), we engineer circular cavities in the inter-
particle space as shown in figure 1(b). Having in mind a goal
of designing array of NHs with electromagnetic properties
similar to array of NDs, we aim to replace the most possible
inter-particle space via circular cavities (figure 1(b)). NHs in
a complementary array thus have a diameter (figure 1(c)):

Dh =
√
2P−Dd. (1)

It is important to note that a complementary array of NHs will
necessarily have similar pitch, P, as the initial array of NDs,
thus the spectral position ofWRAs for normal incidence, given
by,

λp,q = n
P√

p2 + q2
, (2)

are preserved to maintain major resonant features inherent to
the array. Here n is the refractive index of the medium sur-
rounding the nanoparticles, and p and q are integers corres-
ponding to the orders of diffraction in orthogonal directions
within the plane of array. Integers p and q are interchange-
able for square arrays considered in this work, i.e. λp,q = λq,p.
Notice, in a half space geometry, two sets of WRAs emerge:
in the substrate and in the superstrate with respective values of
the refractive index, n, used in equation (2).

Figure 2 demonstrates the values of hole diameter, Dh as
a function of disk diameter, Dd, and P/Dd ratio, according to
equation (1). There are two specific regimes worth more care-
ful consideration:

(i) disks and holes with a same diameter (Dh = Dd), which
is usually examined in ‘disks or holes’ comparative stud-
ies [4]. In this case, Dd = Dh =

√
2P/2;

(ii) touching holes, i.e. Dh = P, which occurs if Dd =
(
√
2− 1)P. This regime is of specific interest, since the

surface area covered withmetal is almost the same for both
NDs and NHs arrays (see figure 2(b)).

In what follows, we set the diameter and height of disks to
Dd = 300 nm and H= 30 nm, respectively, and vary pitches
and hole sizes accordingly, as shown in table 1.

We examine optical properties of regular arrays of PEC,
Au and Ag NDs and complementary arrays of NHs in thin
film with three different configurations of the host medium:
(i) air host with n= 1, (ii) glass host with n= 1.51, and
(iii) air-glass half-space. The reflectance and transmittance
spectra of the nanostructures are calculated with the commer-
cial Finite-Difference Time-Domain package [57]. Nanostruc-
tures are illuminated by a plane wave with normal incidence
(along z axis) and polarization along x axis (figure 1). In the
‘air-glass’ case, the incident illumination is from the glass side.
Perfectly matched layer boundary conditions are used on the
top and bottom sides, while the periodic boundary conditions
are applied at the lateral boundaries of the simulation box. Util-
ized boundary conditions imply that reflectance and transmit-
tance spectra for NDs and NHs are normalized to the surface
area of the unit cell, i.e. P2, which is always necessarily the
same for any particular NH-ND pair, as has been discussed
earlier. An adaptive mesh is used to reproduce accurately the
ND and NH shapes. Tabulated values [58] of dielectric con-
stants of Ag and Au are used in simulations, while PEC is
modeled as material with infinitely large dielectric constant,
i.e. electric field within PEC is set to zero.

In the first conventional case with Dh = Dd, a clear mani-
festation of the Babinet’s principle can be observed for PEC
arrays in a homogeneous environment (figure 3). Due to relat-
ively large absolute values of the real part of dielectric permit-
tivity of Ag and Au for visible and near-IR wavelengths [58],
these materials behave almost like PEC (the difference is
solely due to the wavelength-dependence of Ag and Au per-
mittivities), which also leads to a pronounced manifestation of
the Babinet’s principle: Th ≈ Rd and Td ≈ Rh at λ⩾ 600 nm
for arrays in air and at λ⩾ 900 for arrays in glass (figures 4
and 5). Moreover, reflectance and transmittance spectra are
almost similar for Ag and Au in the above mentioned long-
wavelength region. At the same time, because the absolute
value of the real part of dielectric permittivity of Ag and Au
at λ⩽ 600 nm in air and at λ⩽ 900 in glass is ≈1, there is
quite a discrepancy between Th(Td) and Rd(Rh) in figures 4
and 5, because Ag and Au do not behave as PEC under
such conditions. Optical properties of arrays in air-glass half-
space in general are more complex and resemble a mix of air
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Figure 1. Design of complementary arrays of NHs: (a) initial arrays of NDs with diameter Dd arranged in a square lattice with a pitch P;
(b) identification of circular interparticle cavities to be replaced with NHs; (c) complementary square array of circular NHs with diameter
Dh =

√
2P−Dd. Arrays of disks and holes have the same pitch, P, thus spectral positions of WRAs are the same in both cases.

Figure 2. (a) Diameter, Dh, of complementary holes as a function of disk diameter, Dd, and normalized pitch, P/Dd, according to
equation (1). (b) Normalized (per surface area of the unit cell P2) difference between surface area occupied by metal in arrays of holes, Sh,
and disks, Sd. Vertical dashed lines in (a) and (b) correspond to two specific cases: (i) holes with the diameter equal to the diameter of disks,
Dh = Dd, and (ii) touching holes with the diameter equal to pitch, Dh = P. Stars in (a) correspond to configurations considered in
figures 3–8 with parameters outlined in table 1.

Table 1. Parameters used for arrays of NHs and NDs considered in
figures 3–8.

Dh = Dd (figures 3–5) Dh = P (figures 6–8)

Dd, nm 300 300
H, nm 30 30
P, nm 424 724
Dh, nm 300 724

and glass homogeneous environments. Interestingly, transmis-
sion and reflectance are nearly the same for disks and holes
at λglass

±1,0 = 640 nm in air-glass half-space for all considered
materials (figures 3–5(c) and (f)). It can be explained by the
similarly strong resonant interaction between NDs (NHs) at
wavelengths corresponding to WRAs, which leads to almost
the same respective far-field characteristics for NDs and NHs.
We remind here that even though we have considered a con-
ventional complementaryDh = Dd case, we have chosen a spe-
cific value of period P to satisfy equation (1), which resulted

in an unexpected observation. Instead of the manifestation of
the Babinet’s principle (i.e. Td ≈ Rh and Rd ≈ Th), our par-
ticular design of holes yields in counter-intuitive Td ≈ Th and
Rd ≈ Rh cases in a half-space geometry at wavelengths corres-
ponding to WRAs. Finally, it is also important to notice that
broad peaks at λ≈ 870 nm in figures 4 and 5 are nothing but
familiar localized surface plasmon resonances, which is con-
sistent with the experimental data [59].

Another Dh = P regime predictably violates the Babinet’s
principle, which is observed from transmission and reflection
spectra in figures 6–8. However, now a distinction between
optical properties of NHs and NDs surprisingly becomes less
pronounced. It can be explained by the fact that for sufficiently
large P, most of the interparticle space can be occupied by
circular holes, which makes arrays of disks and holes almost
perfectly mutually interchangeable. In other words, the sur-
face area occupied by metal is nearly the same for arrays of
NHs and NDs (cf figure 2(b)), although the shape of ‘leftover
particles’ in between NHs is more complex than the shape
of NDs. At non-resonant wavelengths below the lowest-order
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Figure 3. Transmittance and reflectance spectra for square arrays of PEC disks (solid lines) and for arrays of holes (dashed lines) for
Dh = Dd case. Grey vertical lines show the spectral positions of the WRAs, λp,q, in air and glass. The combined set of WRAs (both for air
and glass media) is shown for air-glass configuration.

Figure 4. Same as in figure 3, but for Ag NDs and NHs in Ag thin films.

Figure 5. Same as in figure 3, but for Au NDs and NHs in Au thin films.
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Figure 6. Transmittance and reflectance spectra for square arrays of disks (solid lines) and complementary arrays of holes (dashed lines) for
complementary Dh = P case. Grey vertical lines show the spectral positions of the WRAs, λp,q, in air and glass. The combined set of WRAs
(both for air and glass media) is shown for air-glass configuration.

Figure 7. The same as in figure 6, but for Ag NDs and NHs in Ag thin films.

Figure 8. The same as in figure 6, but for Au NDs and NHs in Au thin films.
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Figure 9. Wavelength-dependent absolute difference between (a)–(c) transmittance and (d)–(f) reflectance of Au NDs and NHs arrays for
various values of pitch P and for fixed Dd = 300 nm. Pitch P and NHs diameter Dh are varied to satisfy equation (1). Horizontal lines
correspond to Dh = Dd (P= 424 nm) and Dh = P (P= 724 nm) regimes shown in details in figures 5 and 8, respectively.

WRA, λ < λ±1,0, transmittance and reflectance of disks and
holes arrays are almost indistinguishable between each other,
which is clearly observed for all materials considered here,
even in the case of half-space geometry, where the WRA cor-
responding to the mediumwith the lowest refractive index sets
the threshold for the similarity between NHs and NDs. We
allude here that within this non-resonant regime, polarizab-
ilities of NDs and ‘leftover particles’ are well-described via
MLWA, and are only dependent on the volume of particles,
which is a priopri the same for arrays of NDs and NHs. On the
other hand, at wavelengths larger than the lowest-order WRA,
λ > λ±1,0, there is a strong coherent interaction between
NDs (NHs) in array which leads to the manifestation of so-
called hybrid collective lattice resonances (CLRs) [60], clearly
observed at λ≈ λ±1,0 in figures 6–8 (notice pronounced Fano
shapes of respective resonances, inherent for CLRs). Thus, the
wavelength λ±1,0 can be treated as the threshold wavelength
distinguishing the regime with dominating non-coherent indi-
vidual response of NDs (NHs) for λ < λ±1,0 and the regime
of dominating coherent collective response of NDs (NHs).

A detailed illustration of the transition from complement-
ary (Dh = Dd) to identical (Dh = P) regime is demonstrated in
figure 9 for Au. An absolute difference between transmittance
(reflectance) of NDs and NHs arrays gradually decreases with
an increasing pitch P. In fact, the regime Dh = P clearly sets
the transition at which far-field properties of NHs and NDs
are almost the same at λ < λ±1,0 for larger pitches. Finally, to
ensure that results in figures 6–8 are not a mere luck, we per-
formed a parametric scan for spectral properties of Au arrays
with a wide range of Dd, Dh and P for Dh = P condition sat-
isfying equation (1). Figure 10 shows an absolute difference
between transmittance (reflectance) of NDs and NHs arrays. It
can be seen that indeed, transmittance (reflectance) becomes
almost the same for arrays of NDs and NHs at wavelengths

Figure 10. Wavelength-dependent absolute difference between
(a)–(c) transmittance and (d)–(f) reflectance of Au NDs and NHs
arrays for various values of pitch P. Sizes of NDs and NHs are
chosen to satisfy equation (1) and Dh = P condition. Diameter of
NDs vary from Dd = 82 nm for P= 200 nm up to Dd = 580 nm for
P= 1400 nm.

starting from lowest-order WRA and below, in a homogen-
eous environment and in a half-space geometry.

3. Conclusion

To conclude, we have suggested an intuitive and simple
approach for designing regular arrays of NHs complementary

6



J. Phys. D: Appl. Phys. 55 (2022) 455104 I L Rasskazov et al

to widely used arrays of NDs. Respective periodic structures
with parameters obeying Dh =

√
2P−Dd and Dh = P condi-

tions demonstrate almost similar far-field properties, which
may serve as a useful guide for the design of arrays of NHs
for various applications including but not limiting to sens-
ing [9–16], upconversion luminescence [17], lasing [18–20],
focusing [5], photocatalysis [21], thermoplasmonics [22, 23],
filtering [24, 25], hybrid [27] and plasmon-exciton [28] coup-
ling, and nonlinear optics [26]. Respective comparison of near-
field properties [48, 61, 62] of NHs and NDs designed using
this strategy are the subject of further comprehensive study.
We notice that a broadband close-to-unity transmission for
arrays of holes (figures 7 and 8) along with inherently effi-
cient near-field enhancement makes them especially attractive
for photovoltaic applications [63, 64]. We anticipate that dis-
order [65–67] or finite-size [67–69] effects will have a similar
impact on optical properties of NHs arrays designed in this
work as to originally studied nanoparticles.

In this work, we have limited our discussion to regular
square arrays of NHs and NDs under normal illumination
involving several the most representative plasmonic mater-
ials (Au and Ag) and PEC. Non-normal incidence, differ-
ent lattice arrangements, other plasmonic materials and nan-
oparticles shapes require further examination. For instance,
spectral position of localized surface plasmon resonances can
be tuned upon using nanoparticles or NHs of other shapes
(cubes, bars, triangles etc) [70] or other plasmonic mater-
ials: Al [71, 72], Mg [73], transparent conducting oxides
(Al:ZnO,Ga:ZnO) [74, 75], and transition-metal nitrides (TiN,
ZrN) [75, 76]. At the same time, spectral positions of WRAs
are known to be dependent on the angle of illumination [77]
and on the lattice arrangements [78]. Variety of different pos-
sible scenarios emerging from this design freedom have far-
reaching consequences and ramifications for the nanoscale
manufacturing of holes arrays.
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