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In an absorbing or an active host medium characterized by a complex refractive index n2 = n′2 + in′′2 , our previously
developed modified dipole long-wave approximation (MLWA) is shown to essentially overlie with the exact Mie the-
ory results for localized surface plasmon resonance of spherical nanoparticles with radius a . 25 nm (a . 20 nm)
in the case of Ag and Au (Al and Mg) nanoparticles. The agreement for Au and Ag (Al and Mg) nanoparticles,
slightly better in the case of Au than Ag, continues to be acceptable up to a∼ 50 nm (a∼ 40 nm), and can be used,
at least qualitatively, up to a∼ 70 nm (a∼ 50 nm) correspondingly. A first order analytic perturbation theory
(PT) in a normalized extinction coefficient, κ̄ = n′′2/n′2, around a nonabsorbing host is developed within the dipole
MLWA and its properties are investigated. It is shown that, in a suitable parameter range, the PT can reliably iso-
late and capture the effect of host absorption or host gain on the overall extinction efficiency of various plasmonic
nanoparticles. © 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI)

training, and similar technologies, are reserved.
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1. INTRODUCTION

Electromagnetic scattering in an absorbing host character-
ized by a complex refractive index n2 = n′2 + in′′2 (where n′2
and n′′2 are real) has more than 50 years of history. The tradi-
tional scattering theory neglects the host dissipation and gain
[1,2], because those cases imply either a vanishing or infinite
scattering wave at the spatial infinity. Once wave number
k = k′ + ik′′ = 2πn2/λ0, where λ0 is the vacuum wavelength,
is a complex number, i.e., k′′ 6= 0, conventional expressions for
cross sections cannot be straightforwardly extended for k′′ 6= 0,
because the expressions yield cross sections as complex quan-
tities. Not surprisingly, the history of scattering in an absorbing
host is filled in with a number of controversies [3–19]. This is
probably why in classical textbooks it is only fleetingly men-
tioned in Section 12.1.3 of Ref. [2]. Already the definition of an
incident intensity is not straightforward, as the field incident on
a particle is different at different points on the particle as a result
of an absorbing medium [4,5]. A great deal of effort was required
to arrive at suitable definitions of cross sections for k′′ 6= 0.

In contrast to the conventional case of k′′ = 0, two sets of
cross sections are commonly used: inherent and apparent.

The former is obtained by performing surface integrals of
corresponding Poynting vectors over the particle surface. The
approach was developed a long time ago [4,5], but currently
accepted expressions for the inherent cross sections were not
presented until 1999 [7–10]. The focus of the present work
will be on the apparent extinction cross section, Cext, which is
operationally defined in the far field (see Section 2.A below).
The history of apparent cross sections began with the optical
theorem of Bohren and Gilra [6]. Here, too, it took a long time,
until 2007, to arrive at definitive expressions for the apparent
extinction cross section, Cext [11–14]. A curious feature of the
apparent extinction cross section in an absorbing host is that
it can be negative [20], which is neither an artifact of numeri-
cal simulations nor it violates any physical law. The apparent
extinction cross section quantifies the difference in the readings
of a forward-scattering detector taken with and without the
particle. If the surrounding medium is absorbing, the presence
of the particle can in fact make the detector signal stronger,
thereby implying a negative extinction cross section. There is no
violation of the energy conservation law, since in this case the
extinction cross section is not used to quantify the energy budget
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of a finite volume encompassing the particle [20]. Another
curiosity of apparent cross sections in an absorbing host is that
an intrinsic definition of an apparent absorption cross section,
Cabs, is still missing. The difficulty lies in that the very presence
of a particle necessarily modifies the near field around the par-
ticle. The latter may be the cause of an additional absorption
in the host medium outside the particle compared to what is
happening in the absence of the particle [8,9]. The critical point
is that because the field is disturbed by the particle, additional
absorption may be realized in the medium external to the par-
ticle [21]. Consequently, unlike Cabs and Csca, only apparent
extinction cross section Cext can be consistently defined (see
Section 2.A below).

The focus of the present work is on the apparent extinction
cross section Cext in the so-called modified long-wave approxi-
mation (MLWA) [17,19,22–34]. First, it will be shown that the
apparent extinction cross section conforms better to physical
intuition than the intrinsic extinction cross section. Second,
the MLWA [17,19,22–34], which can be viewed as a next-
order approximation beyond the Rayleigh limit, is known to
overcome a number of severe deficiencies of the Rayleigh limit
[see Eq. (2) below] and, at least for nonabsorbing hosts, be
surprisingly precise [17,19,27,31,33,34].

The outline of our contribution is as follows. Section 2
first recalls in its Subsection 2.A the expression for distance-
independent apparent extinction cross section Cext in the
framework of the Lorenz–Mie theory [13]. In Subsection 2.B
our earlier developed MLWA [33,34] is summarized. In
Subsection 2.C, still within the framework of MLWA, an
analytic first order perturbation theory (PT) in a normalized
extinction coefficient, κ̄ = n′′2/n

′
2, representing the magnitude

of the host dissipation, is developed. A motivation for devel-
oping the above PT is to isolate and capture the effect of the
host absorption or host gain on the overall extinction, which is
not possible within the MLWA (the latter captures only overall
extinction). In Section 3, performance of the above approx-
imations in describing localized surface plasmon resonances
of spherical plasmonic nanoparticles in different absorbing
and active hosts is investigated. Discussion of some of the
observed features is provided in Section 4. We then conclude
with Section 5.

2. THEORY

A. Apparent Extinction Cross Section in the
Framework of the Lorenz–Mie Theory

The specific expression for distance-independent apparent
extinction cross section Cext in the framework of the Lorenz–
Mie theory [13] is given as an infinite sum over different
multipole orders `≥ 1 (see Fig. 1):

Cext =−
2π

k′
Re

{
∞∑
`=1

1

k
(2`+ 1)(TE` + TM`)

}
. (1)

In the optical convention, Tp` correspond to the familiar
Mie’s expansion coefficients a` and b` {Eq. (4.53) of Ref. [2]},
i.e., TE` =−a` for electric, or transverse magnetic (TM),
polarization, and TM` =−b` for magnetic, or transverse electric

Fig. 1. Schematic representation of the problem under consid-
eration. A spherical particle with radius a and refractive index n1 is
embedded in an absorbing or gain medium with n2 = n′2 + in′′2 , where
n′2 and n′′2 are real. Imaginary refractive index of the host n′′2 > 0 for an
absorbing medium and n′′2 < 0 for a gain medium, and n′′2 = 0 for a
transparent medium. Normalized extinction coefficient κ̄ = n′′2/n

′

2 is
introduced to quantify the magnitude of the host dissipation or gain.

(TE), polarization. The physical, or operational, meaning of
the distance-independent apparent Cext is that it determines the
reading of a polarization-sensitive well-collimated radiometer
(WCR) at a sufficiently large distance r from the particle [13]:

WCR signal∝ exp(−2k′′r )(�−Cext)Iinc,

where � is the area of the objective lens of the WCR, and Iinc

is the intensity of the incident homogeneous (uniform) plane
wave at the center of the particle. Importantly, the distance-
independent extinction cross section cannot be introduced in
the context of evaluating the energy budget of an arbitrarily
shaped volume containing the scattering particle [13].

B. Dipole MLWA

The MLWA is a rational approximation to the Mie coefficients
in terms of a fraction of simple polynomials in size parameter x
that in a concise way combines three different elementary terms,
involving a size-independent quasi-static Fröhlich term,

F p` := υ +
`+ 1

`
,

the dynamic depolarization (Dp` ∼ x 2), and the radiative reac-
tion (R p` ∼ x 2`+1 for p = E and R p` ∼ x 2`+3 for p =M) in
the functional form [17,19,22–34]

Tp` =
i R p`(x )

F p` + Dp`(x )− i R p`(x )
. (2)

Assuming nonmagnetic media, one has υ =µ1/µ2 = 1 for
magnetic (TE) polarization (p =M), and υ = ε := ε1/ε2 for
electric (TM) polarization (p = E ), where the subscript 1 in
Eq. (2) identifies the relevant quantities of a sphere (host).

The respective terms F p`, Dp`, R p` in the functional form
of Eq. (2) have well-defined physical origin and meaning (see
Fig. 2). This allows for an intuitive understanding of scatter-
ing from small particles, which, as it will be shown, allows
for rather reliable substitution of infinite series expansion in
terms of Bessel functions of the conventional Mie solution by
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Fig. 2. Demonstration of different physical mechanisms described
within MLWA on the extinction spectra of Ag sphere with a = 40 nm
in the host with n′2 = 1.33. Here κ̄ = 0 for a transparent host and
κ̄ = 0.05 in the case of a dissipative host. The refractive indices of Ag
were taken from Ref. [35]. (a) Quasi-static Rayleigh approximation;
(b) radiative correction taking the effect of retardation with respect to
the incident field; (c) the MLWA including additionally the dynamic
depolarization term. Obviously all the correction terms of the dipole
MLWA given by Eq. (3) are necessary to achieve a fairly accurate
approximation to the exact Mie theory shown in (d) for a comparison.
All the above approximations, but the exact Mie theory, assume a
constant field inside the sphere.

a single dipole term. The functional form of Eq. (2) makes it
transparent that the usual Rayleigh limit, which amounts to
setting Dp`(x )= R p`(x )≡ 0 in the denominator for `= 1 and
p = E , is recovered for x , xs � 1. Here x is in general complex
size parameter, x = 2πa/λ, with λ being the wavelength in
the host medium, whereas xs = 2πn2a/n1λ= x/

√
ε. The

vanishing of the size-independent F in the denominator yields
the usual quasi-static Fröhlich condition, which determines
the quasi-static frequencies ω0` for the occurrence of a localized
surface plasmon resonance (LSPR). In what follows, we shall
focus on the dipole MLWA, which yields [33,34]

TE 1 ≈
2i(ε− 1)x 3/3

ε+ 2− 3(ε− 2)x 2/5− 2i(ε− 1)x 3/3
, (3)

where ε= ε1/ε2 is the relative dielectric function. An excep-
tional feature of the MLWA dipole contribution is that one can
determine analytically an exact position of the complex pole
of TE 1 (the Mie coefficient −a1), and hence the dipolar LSPR
position, at

εE 1 =−2×
1+ 3x 2/5+ i x 3/3

1− 3x 2/5− 2i x 3/3
, (4)

which corrects formula Eq. (6) of Ref. [19]. The proof of that
εE 1 yields complex zero of the denominator D of a1 is relegated
to Section S3 in Supplement 1. In the limit of small x , one can
expand the denominator of εE 1 as ∼1+ 3x 2/5+ 2i x 3/3,
whereby Eq. (4) reduces to the familiar classical Bohren and
Huffman result {cf. Eq. (12.13) of Ref. [2]}:

εE 1 ∼ εBH ≈−2−
12x 2

5
(|x | � 1). (5)

C. Perturbation Theory in a Normalized Extinction
Coefficient within the MLWA

The motivation for developing the perturbation theory is to iso-
late and capture the effect of the host absorption or host gain on
the overall extinction, which is not possible within the MLWA
(the latter captures only overall extinction). To this end, a useful
parametrization of the relative dielectric function ε between the
sphere and the host, suitable for studying the departure from a
nonabsorbing host, is {cf. Eq. (9) of Ref. [19]}

ε=
ε1

ε2
=
(n′1 + in′′1)

2

(n′2 + in′′2)
2 =

(n′1/n
′
2 + in′′1/n

′
2)

2

(1+ in′′2/n
′
2)

2 =
εt

(1+ i κ̄)2
,

(6)
where εt = (n′1/n

′
2 + in′′1/n

′
2)

2
= ε1/(n′2)

2 is the relative (in
general complex number if ε1 is complex) dielectric function
between the sphere and a nonabsorbing host with real refractive
index n′2, and κ̄ = n′′2/n

′
2 is a normalized extinction coeffi-

cient representing the magnitude of the host dissipation. On
substituting the Taylor expansion of the electric dipole term a1,

a1(ε)= a1(εt)+ κ̄
da1

dκ̄

∣∣∣∣
ε=εt

+O(κ̄2),

in the expression Eq. (1) of the apparent cross section, Cext, it is
in principle possible to provide in a systematic way the results for
the extinction efficiency, Qext =Cext/πa2, in the first order of
κ̄ for both gain and absorbing media in the dipole approxima-
tion. The derivative da1/dκ̄ is determined by Eq. (S21) from
Section S5 in Supplement 1:

da1

dκ̄
=−12n′2x ′κ̄Re

[
2− εt(εt − 1)+ 1

5 (ε
2
t − εt + 2)(x ′)2

n2 D2(εt , x ′)

]
,

(7)
where x ′ = x0n′2, with x0 = 2πa/λ being the size parameter in
the vacuum host, and

D(εt , x ′)= εt + 2− 3(εt − 2)(x ′)2/5− 2i(εt − 1)(x ′)3/3
(8)

is the denominator D in Eq. (3) in the limit κ̄→ 0. One finds
eventually

https://doi.org/10.6084/m9.figshare.27061408
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Qext =
Cext

πa 2
≈

2

x ′
Re

{
3

x

[
a1(εt)+ κ̄

da1

d κ̄

∣∣∣∣
ε=εt

]}

=
2

x ′
Re

{
3

x
a1(εt)

}

− 12n′2x ′κ̄Re

[
2− εt(εt − 1)+ 1

5 (ε
2
t − εt + 2)(x ′)2

n2 D2(εt , x ′)

]
,

(9)

which defines the first order expansion of Qext in the parameter
κ̄ within the perturbation theory (PT). The first term on the rhs
is the dipole MLWA in a nonabsorbing host characterized by εt .
The second term on the rhs is the perturbation correction. In
what follows, we will refer to Eq. (9) as the κ̄-PT approximation.

3. RESULTS

A. Dipole MLWA versus Perturbation Theory

Figure 3 compares the performance of various approximations
relative to the exact Mie theory involving

• the dipole MLWA [with the sole term TE 1 in Eq. (1) given
by Eq. (3)],

• the Mie theory approximation with a nonabsorbing host
[determined by Eq. (1) with n′′2 = 0],

• the first order κ̄-PT given by Eq. (9)

in a water-like host (n′2 = 1.33) for different host absorptions
characterized by different values of κ̄ on the example of Ag
spheres with radii between 10 and 50 nm. Figure 4 compares
results for spheres made from most common plasmonic mate-
rials Al, Ag, Au, Mg with radius a = 25 nm in a water-like
host (n′2 = 1.33) with κ̄ =±0.01 and ±0.1 [similar results
for a glass-like host (n′2 = 1.5) are presented in Fig. S2 in
Supplement 1]. For different metals of plasmonic particles
tabulated data of refractive indices have been used as follows:
Al [35], Ag [35], Au [35], Mg [36]. As demonstrated in those
figures, the dipole MLWA can be very precise. In the case of Ag
and Au nanoparticles, the dipole MLWA essentially overlies
with the exact Mie theory results for a . 25 nm. The agree-
ment, slightly better in the case of Au than Ag, continues to be
acceptable up to a ∼ 50 nm (Fig. S1III in Supplement 1), and
can be used, at least qualitatively, up to a ∼ 70 nm (Fig. S1IV
in Supplement 1). In the case of Al and Mg nanoparticles, a
slight deviation from Mie theory results becomes visible by
the naked eye already for a & 25 nm (cf. Figs. S1I and S1II
in Supplement 1). The agreement continues to be acceptable
up to a ∼ 40 nm and can be used at least qualitatively up to
a ∼ 50 nm (Fig. S1III in Supplement 1).

A first general observation is that with increasing sphere
radius the performance of the dipole MLWA worsens. This is
not surprising, as the MLWA is by definition a long wavelength

Fig. 3. Extinction spectra, Qext, for individual spherical Ag nanoparticles with radii a = 10, 20, 30, 40, 50 nm in water-like host (n′2 = 1.33) with
κ̄ = 0.001, 0.005, 0.01, 0.05, 0.1, as shown in the legend for each plot. Spectra were calculated by Eq. (1) of the exact Mie theory (solid red line), the
dipole MLWA by Eq. (3) (blue dotted-dashed line), the Mie theory in nonabsorbing host (n′′2 = 0; dashed green line), and the first order κ̄-PT of our
Eq. (9) (dotted orange line). Because the Mie theory in the nonabsorbing host is independent of κ̄ , its plots are identical at each given column. The
refractive indices of Ag were taken from Ref. [35]. Note a broadening and suppression of plasmon resonances with increasing host absorption.
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Fig. 4. Extinction spectra, Qext, for Al, Ag, Au, and Mg spherical nanoparticles with a = 25 nm embedded in a host absorption medium with n′2 =
1.33 (left two columns) and gain host medium (right two columns) for κ̄ = 0.01, 0.1 (κ̄ =−0.01,−0.1). Qext are shown as calculated by Eq. (1) of
the Mie theory (solid red line), within dipole MLWA of Eq. (3) (blue dotted-dashed line), the Mie theory approximation with the nonabsorbing host
(green dashed line), and by the κ̄-PT given by Eq. (9) (dotted orange line). The refractive indices of Ag, Al, Au were taken from Ref. [35] and those of
Mg from Ref. [36]. Whereas absorption decreases the height of a LSPR and broadens its width, the gain does just the opposite. Note enlarged scale on
the vertical axis in the last column for κ̄ =−0.1.

approximation. The same applies to the κ̄-PT. The κ̄-PT over-
lies with the dipole MLWA for all a ≤ 50 nm, provided that
κ̄ ≤ 0.01. The latter justifies a posteriori that our κ̄-PT is correct.
Another interesting tendency revealed by Fig. 3 (Figs. S1I and
S1II in Supplement 1) is that the maximal radius a for which
the dipole MLWA remains accurate increases with increasing
κ̄ . This observation can be explained by the fact that for a given
particle radius an increasing host absorption suppresses the
contribution of higher-order multipoles that would normally
arise at larger particle sizes. This allows the dipole MLWA to
remain valid over a wider range of particle sizes, as the multipole
effects are suppressed in absorbing media.

Importantly, the results of κ̄-PT and the dipole MLWA
overlie with the exact Mie theory results for a . 25 nm, which
supports an earlier observation on the range of validity of the
MLWA in an absorbing host by Khlebtsov [17]. Whereas the
dipole MLWA continues to overlie with the exact Mie theory
results for a . 25 nm irrespective of κ̄ , the results of the κ̄-PT
begin to deviate from those of the dipole MLWA for κ̄ & 0.05.
An extreme case of such a deviation is provided for the Ag sphere
with a = 25 nm and κ̄ =±0.1 shown in Figs. 4(f ) and 4(h).
Whereas the dipole MLWA nearly overlies the exact result show-
ing a positive (negative) extinction for κ̄ = 0.1 (κ̄ =−0.1),
the κ̄-PT in the respective cases indicates a negative (positive)
extinction. This is to be expected, because the κ̄-PT is a first
order perturbation theory of the dipole MLWA in κ̄ and is
expected to eventually break down above a certain threshold
value of |κ̄|. Negative extinction shown in Fig. 4(h) is an indica-
tion of that particle losses have been more than compensated for
by the gain medium—a precursor of lasing action [37–39].

Fig. 5. Size dependence of Q̄κ̄ , the ratio of the PT correction to the
leading term on the rhs of Eq. (9), for Ag sphere at the (size-dependent)
LSPR wavelength for different κ̄ : (a) 0.001, (b) 0.005, (c) 0.01, and
(d) 0.1.

Surprisingly, the smaller the particle, the greater the deviation
of the κ̄-PT relative to the dipole MLWA for κ̄ & 0.05 (see
Figs. S1 and S2 in Supplement 1). The origin of this behavior
is that D(εt) is typically small in a proximity of a LSPR [cf. the
generalized Fröhlich condition Eq. (5)]. Whereas the first term
in Eq. (9) is of the order 1/D(εt), the term proportional to κ̄
is of the order 1/D2(εt). However, when the size parameter x
increases, |D(εt)| at a LSPR decreases (due to a larger separation
from the complex zero), and, as illustrated in Fig. 5, Q̄κ̄ , defined
as the ratio of the PT correction to the leading term on the rhs
of Eq. (9), gradually decreases, whereby the first order κ̄-PT
begins to approximate the MLWA. Note also how the ratio Q̄κ̄

increases with κ̄ , which, as expected, explains why the κ̄-PT
begins to deviate from the MLWA with increasing κ̄ .
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B. Mie Theory Approximation with Nonabsorbing
Host

Similar behavior is observed for the Mie theory approxima-
tion with a nonabsorbing host (n′′2 = 0) that begins to deviate
from the exact Mie theory results, but somewhat earlier, begin-
ning with κ̄ = 0.01. Again the smaller the particle, the greater
the deviation. Nevertheless, in a relatively weakly absorbing
host the Mie theory approximation with a nonabsorbing host
becomes the best approximation. For example, the Mie theory
in a nonabsorbing host begins to overlie with the Mie theory
in an absorbing host for a & 50 nm and κ̄ = 0.01 (see Fig. S1
in Supplement 1). A threshold radius for which it happens
increases with κ̄ .

Why the Mie theory approximation with a nonabsorbing
host becomes the best approximation for sufficiently large a
can be explained by the increasing relevance of higher-order
multipole contributions with increasing particle size. This is
understandable, because with increasing a higher-order multi-
poles, which are obviously absent in any dipole approximation,
become more and more relevant. This is demonstrated also
in Fig. 6 showing the effect of increasing the radius of spheri-
cal Ag nanoparticles in a poly(3-hexylthiophene) (P3HT)
host medium, which was used in a number of recent studies
[15,17,19,40]. Unlike inherent dipole approximations, the Mie
theory approximation with a nonabsorbing host captures rea-
sonably well both the dipole and quadrupole peaks. Obviously,
the higher-order MLWA of Ref. [34] could have captured the
quadrupole peak, but this goes beyond the scope of the present
study.

C. Isolating the Host Dissipative Effects on the
Extinction Cross Sections

The dissipative effects of the host on the extinction cross sec-
tions, Qext, can obviously be isolated by subtracting from the
exact value Qext = Qext;ε the value of Qext;εt obtained by the
Mie theory for the nonabsorbing host characterized by n′′2 = 0

Fig. 6. Extinction spectra, Qext, for spherical Ag nanoparticles with
(a) a = 50 nm, (b) a = 60 nm, (c) a = 70 nm, and (d) a = 80 nm
embedded in poly(3-hexylthiophene) (P3HT) host medium. Spectra
are shown as calculated with the exact Mie theory (solid red line), the
Mie theory for nonabsorbing media (n′′2 = 0) (green dashed line), the
dipole MLWA (blue dotted-dashed line), and the κ̄-PT (dotted orange
line).

Fig. 7. The effect ηeff of the host absorption (left column) and the
gain host medium (right column) on Qext in the Mie theory (solid
red line) and the κ̄-PT (dashed dark green line) for Al, Ag, Au, and
Mg materials with different radii a embedded in the host medium
with n′2 = 1.33 and κ̄ = 0.001 (left column) and κ̄ =−0.001 (right
column).

(i.e., ε→ εt ). In what follows, we denote the difference by
ηeff := Qext;ε − Qext;εt . Thus ηeff quantifies the contribution
of the host absorption or gain in the resulting Qext. To our
satisfaction, it turns out that, in a suitable parameter range, the
analytic κ̄-PT can reliably capture the effect of the host absorp-
tion on the extinction efficiency of a plasmonic nanosphere as
demonstrated in Fig. 7. Not surprisingly, the agreement can
also be reached in the case of gain media, which opens the door
for analysis of promising applications involving active media,
see Fig. 4 (Fig. S5 in Supplement 1), such as spasers [37–39].
Therefore, within the range of its validity, the first order κ̄-PT
allows one to both intuitively and analytically understand
the mechanisms of host dissipation or gain on the extinction
efficiency of a plasmonic nanosphere.

4. DISCUSSION

First-principles far-field computations based on the general
Lorenz–Mie theory showed that increasing absorption in the
host medium broadens and suppresses plasmon resonances in
the apparent extinction [14]. Such a broadening and suppres-
sion of plasmon resonances is also present in all approximations
shown in Figs. 3 and 4. The effect of absorption in the host
thus goes in the same direction as increasing absorption within
the particle. Noteworthy, increasing gain in the host medium
narrows plasmon resonances and increases their amplitude
in the apparent extinction as demonstrated in Fig. 4 (cf. also
Fig. S3, Supplement 1). This goes along physical intuition.
Contrary to the apparent extinction, in the case of the inherent

https://doi.org/10.6084/m9.figshare.27061408
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cross sections a surrounding lossy medium was shown to narrow
the plasmonic resonances, as well as increase their amplitude
dramatically [15,17].

The dipole MLWA can, in principle, be used up to the laser
threshold associated with the so-called spectral singularity of
non-Hermitian models. Indeed, as it has been verified both
experimentally and theoretically more than 15 years ago, a
description of gain media consisting of changing the sign of
extinction is a valid approximation up to the laser threshold
[41]. This could be particularly important for applications in
spasers and nano-lasers.

For the sake of completeness, a rather exhaustive MLWA
analysis in the absorbing case has been recently provided by
Khlebtsov [17] by employing slightly different MLWA. The
study of Ref. [17] arrived at similar conclusions that MLWA is
very precise for a . 25 nm. Our study complements Ref. [17]
with (i) a first order analytic perturbation theory around a non-
absorbing host in a normalized extinction coefficient κ̄ (κ̄-PT)
and (ii) an investigation of gain media. In addition, we have
examined the behavior of Al and Mg nanoparticles.

5. CONCLUSIONS

Our previously developed modified dipole long-wave approxi-
mation (MLWA) was shown to essentially overlie with the exact
Mie theory results for a . 25 nm (a . 20 nm) in the case of
Ag and Au (Al and Mg) nanoparticles. The agreement for Au
and Ag (Al and Mg) nanoparticles, slightly better in the case
of Au than Ag, continues to be acceptable up to a ∼ 50 nm
(a ∼ 40 nm), and can be used, at least qualitatively, up to
a ∼ 70 nm (a ∼ 50 nm). Expanding the discussion to the case
of larger nanoparticles with a > 70 nm almost certainly requires
consideration of MLWA for higher-order multipoles [31,34].
We developed within the dipole MLWA a first order analytic
perturbation theory (PT) around a nonabsorbing host in a nor-
malized extinction coefficient κ̄ and investigated its properties.
It was shown that, in a suitable parameter range, the κ̄-PT can
reliably isolate and capture the effect of host absorption or host
gain on the overall extinction efficiency of spherical plasmonic
nanoparticles. Considering growing interest in light-matter
interactions, we expect that our results will help in designing
optimal systems comprising plasmonic nanoparticles embedded
in suitable dissipative or gain media for various applications,
such as photothermal therapy [42,43], spasers, and other active
medium devices [37–39].
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