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A potential control over the position of maxima of scattering
and absorption cross sections can be exploited to better
tailor nanoparticles for specific light–matter interaction
applications. Here we explain in detail the mechanism of
an appreciable blue shift of the absorption cross-section
peak relative to a metal spherical particle localized surface
plasmon resonance (LSPR) defined as the maximum of the
extinction (and scattering) cross section. Such a branching
of cross sections’ maxima requires a certain threshold value
of size parameter (x ≈ 0.7 for dipole channel) and is a pre-
requisite for obtaining high fluorescence enhancements,
because the spectral region of high radiative rate enhance-
ment becomes separated from the spectral region of high
non-radiative rate enhancement. A consequence is that the
maximum of the absorption cross section cannot be used
as the definition of the LSPR position for x & 0.7. © 2020
Optical Society of America

https://doi.org/10.1364/OL.397782

The electromagnetic theory of light scattering from small par-
ticles with sizes comparable to the wavelength of the incident
illumination has a long history [1]. In a number of applications,
control of the absorption is preferable, which led to extensive
theoretical and numerical works in this direction [2–8], as
well as various experimental applications [9–12]. Our recent
study [13] revealed that optimal metallo–dielectric core–shell
particles designed to obtain the highest possible fluorescence
enhancements have a spectral region of high radiative rate
enhancement red shifted and well separated from the blue
shifted spectral region of high non-radiative rate enhancement
{Fig. 4 of [13]}. Herein and below, any red or blue shift, unless
specified otherwise, refers to relative to the particle localized
surface plasmon resonance (LSPR). For the purpose of this
Letter, a LSPR position will be identified as a maximum of the
total (extinction) cross section. The maximum of radiative
rate enhancement coincides with the maximum of the near
field (NF) [13], and the NF peak red shift has been known for
a long time [14]. Contrary to that, there seem to be no reports
of a blue shift of the maximum of the absorption cross section,

σabs, responsible, e.g., for the maximum of non-radiative rate
enhancement [13]. Below we explain in detail the mechanism
underlying the puzzling and appreciable, yet so far overlooked,
blue shift of the absorption cross-section peak. Because Fig. 1
shows that such a pronounced blue shift of the absorption cross
section is intrinsic already for a homogeneous spherical metal
particle of sufficiently large radius r s , we shall here, for the sake
of simplicity, focus only on homogeneous particles.

The resulting cross sections in the Mie theory are given as
an infinite sum over all momentum channels `≥ 1 and both
polarizations [15,16]. According to Eqs. (2.135-8) of Ref. [15],
any given angular momentum channel ` of one of polarizations
[A= E for electric (or TM) polarization, and A=M for mag-
netic (or TE) polarization] contributes the following partial
amount to the resulting cross sections shown in Fig. 1(a):

σsca;` =
6π

k2
|TA`|

2, (1)

σabs;` =−
6π

k2

[
|TA`|

2
+<(TA`)

]
, (2)

σext;` =−
6π

k2
<(TA`), (3)

where TA` are the T-matrix elements, < takes the real part,
k = 2π/λ is the wavenumber, and λ is the incident wavelength
in the host medium. For `= 1, the above expressions can
be easily rephrased in terms of a particle polarizability, α, on
substituting 2ik3α/3 for TE 1. In the case of a homogeneous
sphere, the respective T-matrix elements in a given `-th angular
momentum channel are {Eq. (2.127) of [15]}

TA` =−
m[x j`(x )]′ j`(xs )− j`(x )[xs j`(xs )]

′

m[xh`(x )]′ j`(xs )− h`(x )[xs j`(xs )]′
, (4)

where x = kr s is the dimensionless size parameter, r s is the
sphere radius, xs = x

√
ε̃s , where ε̃s = εs/εh is the relative

dielectric contrast, with εs (εh ) being the sphere (host) per-
mittivity. In what follows, the host will be assumed to be air
(εh = 1). One has, assuming nonmagnetic media, m = 1 for
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Fig. 1. (a) Fundamental cross sections of a homogeneous Au par-
ticle of radius r s = 170 nm calculated via Mie theory. Whereas the
maxima and minima of the extinction (σext) and scattering (σsca) cross
sections occur in unison, the absorption (σabs) cross section does not
exhibit any maximum at the dipole (`= 1) and quadrupole (`= 2)
peaks of σext. The first maximum of σabs is largely blue shifted and
occurs nearly at the octupole (`= 3) peak of σext. (b)–(d) Details
of the cross sections in the respective angular-momentum chan-
nels. The quasi-static LSPR positions ω0`, defined implicitly by
<(εs )=−(`+ 1)/`, are shown by pink vertical lines. Note the
reshuffling of the natural order of the maxima of σabs of the respective
multipoles.

magnetic and m = ε̃s for electric polarization, j` and h` = h(1)`
are the conventional spherical functions {see Section 10 of
Ref. [17]}, and prime denotes the derivative with respect to the
argument. The Drude model is used throughout this Letter for
Au permittivity:

εs = ε∞ −
ω2

p

ω(ω+ iγ )
, (5)

with high-frequency permittivity limit ε∞ = 9.5, the bulk
plasma frequency ωp = 8.9488 eV, and damping constant
γ = 0.06909 eV, which is optimized to fit experimental data of
Johnson and Christy [18].

As seen in Fig. 2(a), with increasing particle radius up to
r s ' 70 nm, the maxima of all cross sections of the dipole term
of the Mie series experience initially monotonically increasing
red shift from the initial quasi-static LSPR position at ω01.
Thereafter the maximum of the absorption cross section (2)
gradually reverses its red shift relative to ω01 into an increasing
blue shift, which for r s ≈ 100 nm can be as large as 100 nm.
The position of the maximum of the absorption cross section
becomes eventually nearly constant with increasing size param-
eter x in a blue shifted region [centered around the frequency
implicitly given by Eq. (11)] relative toω01.

As suggested by Figs. 2(c) and 3, the modified long-
wavelength approximation (MLWA) agrees very well with
the exact Mie theory over the entire size range up to x ≈ 5 not
only for dipole, but also for higher multipole contributions.
Therefore, the essentials of the blue shift can be captured by
the MLWA. The usual MLWA [19–21] is a limiting form of
the Mie dipole term that, unlike the usual quasi-static Rayleigh
approximation, keeps both dynamic depolarization (∼x 2)
and radiative reaction (∼x 3) terms. This is why the MLWA
can account for a size-dependent red shift of the dipole LSPR,
whereas the Rayleigh approximation cannot. Here we use the
following MLWA form of the T-matrix that is valid in any given
channel ` {cf. Eq. (A3) of [21] for `= 1}:

Fig. 2. Evolution of the spectral positions of the maxima of absorp-
tion, extinction, and scattering cross sections with increasing sphere
radius r s of Au sphere in air for dipole `= 1 electric mode contribution
calculated by (a) exact Mie theory and (b) on using Eqs. (7)–(9) of
MLWA. Note a very nice agreement between the respective results
(c). Whereas the scattering and extinction cross-section peak posi-
tions continue in their synchronized red shift relative to ω01 with
increasing r s , the absorption cross-section peak reverses its initial red
shift to an appreciable blue shift, which remains essentially stable
for r s & 100 nm. Note in passing that a spectral gap between the
LSPR (determined as the extinction cross-section peak position) and
the absorption cross-section peak position can be as large as 2 eV for
r s ≈ 200 nm.

Fig. 3. Evolution of the spectral positions of the maxima of
quadrupole (`= 2) and octupole (`= 3) absorption, extinction, and
scattering cross sections with increasing sphere radius r s .

TE` ∼
i R(x )

F + D(x )− i R(x )
,

F = ε̃s +
`+ 1

`
,

D(x )=
(
`− 2

`+ 1
ε̃s + 1

)
(`+ 1)(2`+ 1)

`(2`− 1)(2`+ 3)
x 2,

R(x )=
`+ 1

`(2`− 1)!!(2`+ 1)!!
(ε̃s − 1)x 2`+1. (6)

Equation (6) is derived by using asymptotic expressions for
spherical Bessel and Hankel functions used in Eq. (4). It
makes transparent that TE` in any given channel is deter-
mined solely by a size-independent quasi-static Fröhlich term
F , a dynamic depolarization term D (∼x 2), and a radiative reac-
tion term R (∼x 2`+1). The vanishing of the size-independent
F in the denominator yields the usual quasi-static Fröhlich
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LSPR condition, which determines the quasi-static LSPR
frequencies ω0`. In the case of a Drude fit (5) of εs one
finds ω0` =ωp/

√
ε∞ + [(`+ 1)εh/`]. One refers, some-

what misleadingly, to a unitarity, if the substitution of a
given approximation to TE` into the above equations yields
σext;` = σsca;` + σabs;`. The MLWA can be shown to satisfy
unitarity. In contrast, the usual Rayleigh limit, which amounts
to setting D(x )= R(x )≡ 0 in the denominator of the dipole
MLWA TE 1 in (6), yields a purely imaginary TE` for real εs (i.e., a
purely real polarizability) and violates the unitarity [21].

In what follows we shall focus on the dipole MLWA. The
higher-order multipole MLWA can be treated similarly. On
substituting Eq. (6) into Eqs. (1)–(3), one finds the following
cross sections of the dipole MLWA contribution:

σsca;1 =
4π

15k2

10x 6
∣∣ε̃s − 1

∣∣2∣∣ε̃s + 2− 3
5 (ε̃s − 2)x 2 − i 2

3 (ε̃s − 1)x 3
∣∣2 , (7)

σabs;1 =
4π

15k2

9x 3
(
x 2
+ 5

)
=(ε̃s )∣∣ε̃s + 2− 3

5 (ε̃s − 2)x 2 − i 2
3 (ε̃s − 1)x 3

∣∣2 , (8)

σext;1 =
4π

15k2

9x 3
(
x 2
+ 5

)
=(ε̃s )+ 10x 6|ε̃s − 1|2∣∣ε̃s + 2− 3

5 (ε̃s − 2)x 2 − i 2
3 (ε̃s − 1)x 3

∣∣2 , (9)

where =(ε̃s ) denotes the imaginary part of ε̃s . For =(ε̃s )= 0,
the common denominator |1|2 of the dipole MLWA cross
sections Eqs. (7)–(9) vanishes at

ε̃s ≈−2−
12x 2

5
(10)

up to the order x 3, in which case 1≈O(x 3). For =(ε̃s ) 6= 0,
one can approximate |1|2 as

|1|2 ≈

∣∣∣∣(1−
3x 2

5

)
=(ε̃s)+ 2x 3

∣∣∣∣2

+

∣∣∣∣2x 3

3
=(ε̃s)

∣∣∣∣2

.

Equation (10) imposes a restriction on the real part of ε̃s
{Eq. (B1) of [21]} explaining the observed initial size-dependent
red shift of all cross sections [Fig. 2(a)].

At the MLWA branching point at r s ≈ 90 nm in Fig. 2(b),
where the peak position of σabs;1 begins to deviate from the
remaining cross sections, the size parameter x ≈ 0.975 [cf.
x ≈ 0.7 and the internal size parameter xs =

√
ε̃s xs ≈ 1.1 for

the branching point at r s ≈ 70 in the Mie theory in Fig. 2(a)].
The appearance of the branching point and ensuing blue shift
of the absorption cross section (2) can be explained within the
dipole MLWA as follows:

(i) For x 2
� x 3, the maxima positions are governed by the

first two terms of the complex root of1 on the right-hand
side of Eq. (10), as was already observed by Bohren and
Huffman {Section 12.1.1 of [16]}, yielding the red shifted
behavior of the maximum of 1/1 relative to ω01 with
increasing x . The latter is the chief cause of the initially
synchronized red shifted behavior of the maxima of all three
fundamental scattering cross sections relative to ω01 with
increasing x . This is why, unlike the Rayleigh approxima-
tion, the MLWA can account for the size-dependent red
shift of the dipole LSPR.

Fig. 4. Evolution of the blue shifted maximum of the dipole σabs;1

with increasing x . (a) Minimum of denominator and (b) correspond-
ing value of the numerator for absorption and scattering cross sections
of Eqs. (8) and (7). A double peak of 1/|1|2 for r s = 170 nm, with the
maximum at the frequency implicitly given by Eq. (11), can be clearly
identified. Note that the numerator of σsca;1 is smaller than that of σabs;1

at Eq. (11). Panels (a) and (b) also illustrate the well-known fact that
smaller particles have much larger absorption than larger particles [16].

(ii) As soon as x 3
∼ x 2, the x 3-term of1 in Eqs. (7)–(9) begins

to dominate. One can achieve another maximum of 1/1 if
the x 3-term is rendered as small as possible, i.e., ε̃s has to be
ideally +1. The latter can, in the case of dissipative media
(Au), be in principle achieved only with a suitably tailored
gain. In the present case, we are left with the condition

<(ε̃max;abs)≈ 1, (11)

which means that the blue shifted maximum of σabs;1
coincides with the condition of minimizing the radiative
reaction [Fig. 4(a)]. This causes a maximum of σabs;1 but
not of σsca;1 (Fig. 1). The reason that the other maximum
of 1/1 does not cause a maximum of σsca;1 is that the latter
has |ε̃s − 1| in its numerator, which becomes very small, in
contrast to σabs;1 having =(ε̃s) in its numerator [Fig. 4(b)].
Note that <(ε̃max;abs)≈−1.5 for r s ≈ 91.5 nm, and
<(ε̃max;abs)≈ 1 for r s & 107 nm.

The condition Eq. (11) explains why the position of the
blue shifted maximum of σabs;1 remains substantially con-
stant with increasing r s , soon after it branches off from the
position of maxima of the other two cross sections. With the
parameters of the Drude fit (5), the zero of <(ε̃s ) occurs at
ωz =ωp/

√
ε∞ =ωp/

√
9.5≈ 2.99144 eV. The <(ε̃s )= 1

occurs atωrc =ωp/
√

8.5≈ 3.0694 eV. One can clearly observe
in Figs. 2 and 4(a) how the blue shifted maximum of σabs;1
stabilizes aroundωrc with increasing x . Obviously, the blue shift
of absorption is possible only if=(ε̃s) at the frequency implicitly
given by Eq. (11) is sufficiently small, as in the present case of
Au. Provided that=(ε̃s) in Eq. (11) is sufficiently large, this may
prevent1 from acquiring a local minimum, and the blue shift of
absorption may be absent.

The situation for ` > 1 is analogous to that for `= 1 in that
the radiative reaction term R in Eq. (6) maintains its factor
ε̃s − 1. A slight modification to the `= 1 case results from the
`-dependent factor (`+ 1)/[`(2`− 1)!!(2`+ 1)!!] of R(x )
in Eq. (6) decreasing much faster with increasing ` than the
`-dependent factor (`+ 1)(2`+ 1)/[`(2`− 1)(2`+ 3)] of
D(x ). Therefore, the threshold size parameter x value required
for the MLWA σabs;` to exhibit a blue shifted maximum nec-
essarily increases with increasing `. Again, this is clearly seen in
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Fig. 3. Consequently, the build-up of the blue shifted maxima
of σabs;` is not uniform in `. For a given fixed x , only the lowest
multipoles have blue shifted maxima, whereas the maxima
of the remaining multipoles continue to be red shifted. The
latter causes a rearrangement of the natural order of the `-pole
absorption maxima: the lowest absorption peak of σabs may be
due to `= 3 followed by `= 4, and only later the absorption
maxima of `= 1, 2 appear (Fig. 1). Overall, the above condition
Eq. (11) defines a rare location at which the total σabs (�σsca)
is the dominant contribution to σext and the single-scattering
albedo (the ratio of scattering efficiency to total extinction
efficiency) acquires its minimum [Fig. 1(a)].

To conclude, the properties of small metal particles continue
to surprise. Whenever one thinks a full understanding has been
reached, some unexpected connection or an unnoticed property
appears. We have demonstrated that at the size parameter value
x & 0.7, the maximum of the absorption cross section σabs;1
can be appreciably blue shifted even relative to the quasi-static
positionω01 of the dipole LSPR. An obvious consequence is that
the maximum of σabs;1 can no longer be used as the definition
of the LSPR position for x & 0.7. A threshold size parameter
value required to exhibit a blue shifted maximum of σabs;` for an
`-pole increases with increasing `. The latter causes a rearrange-
ment of the natural order of `-pole absorption maxima [e.g., the
lowest absorption peak of σabs may be due to octupole (`= 3)
as shown in Fig. 1(a)]. The blue shift of absorption is possible
only if =(ε̃s) at the frequency implicitly given by Eq. (11) is
sufficiently small. We have demonstrated it here explicitly for
the case of the Au nanosphere, but the same behavior can be
observed also for other materials such as Ag and Al. Our results
bring us one step closer to an ideal world scenario, where one
would be able to achieve control over the position of maxima
of basic cross sections in order to better tailor nanoparticles
to specific light–matter interaction applications. They could
be of immediate interest not only for enhanced fluorescence
[13], but also for nonlinear optics [6], surface enhanced Raman
spectroscopy [22,23], heat management, thermophotovoltaics,
photothermal imaging [9], thermoplasmonics, such as ther-
mally enhanced surface chemistry [10], plasmonic heating [11],
optoplasmonic evaporation, or solar vapor generation enabled
by nanoparticles [12]. It would be interesting to investigate if
such a branching of the absorption cross section occurs also for
other particle shapes.

It is worthwhile to mention that recent work [24] deals with
a related issue within the electrostatic approximation (i.e., the
Rayleigh limit), without any use of MLWA, and without any
comparison with the exact Mie results. Under these limitations,
it is difficult to argue for a blue shift if already the well-known

size-dependent red shift Eq. (10) relative to ω0` cannot be
properly accounted for.
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