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We obtain exact analytic expressions for (i) the electromagnetic energy radial density within and outside a multilay-
ered sphere and (ii) the total electromagnetic energy stored within its core and each of its shells. Explicit expressions
for the special cases of lossless core and shell are also provided. The general solution is based on the compact recur-
sive transfer-matrix method, and its validity includes also magnetic media. The theory is illustrated on examples of
electric field enhancement within various metallo–dielectric silica–gold multilayered spheres. The user-friendly
MATLAB code, which includes the theoretical treatment, is available as a supplement to the paper. © 2019 Optical

Society of America
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1. INTRODUCTION

Multilayered spherical particles of various sizes and material
composition are an important part of modern science and
technology due to exceptionally adjustable and extraordinary
electromagnetic properties. In this regard, the interaction of
the electromagnetic wave with a multilayered spherical particle
under plane-wave [1–11] or general beam [12–16] illumi-
nations represents a problem of long-standing interest. The
solution of this problem implies the definition of the electro-
magnetic field within or outside a sphere, which allows one to
obtain its absorption, scattering, extinction, or other impor-
tant characteristics. Among these properties, the cycle- and
orientation-averaged electric |E|2 and magnetic |H|2 fields
(in general, electromagnetic energy) within a particular layer
(shell) or in the vicinity of a multilayered sphere are of great
importance, since they define performance and suitability of
a multilayered sphere for a large number of intriguing appli-
cations: nonlinear optics [17–19], lasing [20–22], heating
[23–25], photocatalysis [26], fluorescence enhancement
[27–30], plasmon-enhanced upconversion [31,32], energy
harvesting and storing [33–36], surface-enhanced Raman
spectroscopy [37–39], biology, and medicine [40–44].

Thus, specific attention is drawn to theoretical considera-
tions of the electromagnetic energy within and in proximity
to multilayered spherical particles. This fundamental prob-
lem has been thoroughly studied for homogeneous spheres:
exact analytic expressions are reported for the electromagnetic
energy in dielectric [45,46], magnetic [47], and chiral [48]
spheres. These solutions have been extended for two-layered
[20,49] and three-layered [39] spheres by using the recursive

relations, which makes corresponding analytic representa-
tion quite cumbersome and difficult to generalize for N > 3
shells. Alternatively, a semi-analytic approach might be used
for estimating orientation-averaged local fields [37], which
involves analytic representation of electromagnetic field within
the spherical particle and its consequent numeric integration
within the volume of a particle [50]. However, given that various
optimization algorithms [51,52] are used to find the optimal
design of multilayered spheres for a particular application,
the development of closed-form analytic expressions becomes
highly desirable. Here, we fulfill this need and present a rigorous
and, quite importantly, compact analytic solution for (i) the
electromagnetic energy radial density within and outside a
multilayered sphere and (ii) the total electromagnetic energy
within its core and each of its shells.

The paper is organized as follows. In Section 2, we provide a
brief overview of the recursive transfer-matrix solution of the
electromagnetic light scattering from a multilayered sphere,
which has been proposed and thoroughly discussed in Ref. [27];
in Section 3, within the framework of this formalism, we derive
a solution for the electromagnetic energy and its density within
the multilayered sphere; in Section 4, we provide explicit expres-
sions for specific cases of the electromagnetic energy stored
within a core of a multilayered sphere, in a lossless shell, and
in the surrounding medium close to a sphere. Discussion of
numerical results for silica–gold multilayered nanospheres
is given in Section 5. Finally, we draw conclusive remarks
in Section 6 and provide useful relations and derivations in
Appendices A–C.
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Fig. 1. Schematic representation of the multilayered sphere embed-
ded in a homogeneous isotropic host medium with permittivity
εh = εN+1 and permeability µh =µN+1. Note that the center of the
sphere is located at the origin of the reference system, which is shown
separately for convenience.

2. RECURSIVE TRANSFER-MATRIX METHOD

Consider a multilayered sphere with N concentric shells as
shown in Fig. 1. The sphere core counts as a shell with number
n = 1 and the host medium is the n = N + 1 shell. Each shell is
assumed to be homogeneous and isotropic with scalar permit-
tivity εn and permeabilityµn . The outer radius of the n-th shell
is denoted by rn . Spherical coordinates are centered at the sphere
origin.

We assume that the multilayered sphere is illuminated
with a harmonic electromagnetic wave having vacuum wave-
length λ. The corresponding wave vector in the n-th shell is
kn = ηnω/c = 2πηn/λ, where c is the speed of light in vac-
uum, ω is frequency, and ηn =

√
εnµn is the refractive index.

Electromagnetic fields in any shell are described by the station-
ary macroscopic Maxwell’s equations (in Gaussian units, with
time dependence e−iωt assumed and suppressed throughout the
paper):

E=
i c
ωε
(∇×H), H=−

i c
ωµ

(∇× E), (1)

where the permittivity ε and permeabilityµ are scalars.
Following the notation of [27], the basis of normalized (nor-

malization here refers to angular integration) transverse vector
multipole fields ∇ · Fγ L ≡ 0 that satisfy the vector Helmholtz
equation

∇×
[
∇× Fγ L(k, r)

]
= k2Fγ L(k, r)

for n-th shell, 1≤ n ≤ N + 1, can be formed as [27]

FML(kn, r)= fML(knr )Y(m)L (r),

FE L(kn, r)

=
1

knr

{√
l(l + 1) fE L(knr )Y(o)L (r)+

d

dr
[r fE L(knr )] Y(e )L (r)

}
,

(2)

where

F̃E L(kn, r)=
1

kn
∇× FML(kn, r),

F̃ML(kn, r)=
1

kn
∇× FE L(kn, r), (3)

with f̃E L = fML and f̃ML = fE L . Here, L = lm is a composite
angular momentum index; Y(m)L , Y(o)L , and Y(e )L are, respectively,
magnetic, longitudinal, and electric vector spherical harmonics
of degree l and order m (see Appendix A for their definition),
and fγ L is a suitable linear combination of spherical Bessel
functions. Provided that the multipole fields in Eq. (2) represent
E, the respective subscripts M and E denote the magnetic, or
transverse electric (TE), and electric, or transverse magnetic (TM),
polarizations, respectively [53].

In the respective cases in which fγ l = jl and fγ l = h(1)l ,
where jl and h(1)l are the spherical Bessel functions of the first
and third kinds, correspondingly, the multipoles Fγ L will be
denoted as Jγ L and Hγ L . A general solution for the electric field
in the n-th shell, 1≤ n ≤ N + 1, reads then as [27]

Eγ (r)=
∑

L

Fγ L(kn, r)

=

∑
γ,L

[
Aγ L(n)Jγ L(kn, r)+ Bγ L(n)Hγ L(kn, r)

]
,

with corresponding

fγ L = Aγ L(n) jl (knr )+ Bγ L(n)h
(1)
l (knr ) (4)

to be determined. The expansion of magnetic field H is related
to that of the electric field E by the stationary macroscopic
Maxwell’s equations (1) on using relations (3).

Expansion coefficients Aγ L(n) and Bγ L(n) are determined
by matching fields across the shell interfaces, i.e., requiring that
the tangential components of E and H are continuous. For the
surrounding medium, i.e., the (N + 1)-th shell, the expansion
coefficients will occasionally be written as

Cγ L ≡ Aγ L(N + 1), Dγ L ≡ Bγ L(N + 1).

Coefficients Aγ L(n) and Bγ L(n) can be found via the transfer-
matrix solution in terms of 2× 2 lowering (backward) T−γ l (n)
and raising (forward) T+γ l (n) transfer matrices [27]. The raising
transfer matrices translate the expansion coefficients Aγ L(n)
and Bγ L(n) from the n-th shell into the coefficients Aγ L(n + 1)
and Bγ L(n + 1) in the (n + 1)-th shell:(

Aγ L(n + 1)
Bγ L(n + 1)

)
= T+γ l (n)

(
Aγ L(n)
Bγ L(n)

)
, (5)

whereas the lowering transfer matrices translate the coeffi-
cients A(n + 1) and B(n + 1) in the (n + 1)-th shell into the
coefficients A(n) and B(n) in the n-th shell:(

Aγ L(n)
Bγ L(n)

)
= T−γ l (n)

(
Aγ L(n + 1)
Bγ L(n + 1)

)
. (6)

It can be easily seen from Eqs. (5) and (6) that the lowering and
raising transfer matrices are related as

[T+γ l (n)]
−1
= T−γ l (n), [T−γ l (n)]

−1
= T+γ l (n). (7)

Provided that the coefficients Aγ L(n + 1) and Bγ L(n + 1)
are known, the coefficients Aγ L(n) and Bγ L(n) can be unam-
biguously determined, and vice versa. The constituent transfer
matrices T+γ l and T−γ l can be viewed as analogous to ladder
operators of quantum mechanics.
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To determine the expansion coefficients at any shell, mixed
boundary conditions are imposed, which fix two of the coeffi-
cients Aγ L(n) and Bγ L(n′) for each given γ and L , where in
general, n 6= n′:

1. the regularity condition of the solution at the sphere origin,
which eliminates h(1)l (0)→∞ for fγ l in Eq. (4):

BE L(1)= BML(1)≡ 0; (8)

2. for a given frequency ω, the Aγ L(N + 1)=Cγ L coeffi-
cients are equal to the expansion coefficients of an incident
electromagnetic field in spherical coordinates.

For general (e.g., focused or Gaussian) beams, numerical
integration is, as a rule, required to arrive at the expansion coeffi-
cients [12,13,15,16]. Nevertheless, closed analytic expressions
for the Cγ L = 0’s are known for two important incident fields.
The most familiar example, which we shall examine in detail
below, is furnished by incident plane electromagnetic wave
E(r)= E0 exp(ik · r), whose expansion in vector spherical wave
functions reads as

E0 exp(ik · r)=
∑

L

Cγ L Jγ L(kr ), (9)

where

CML = 4π i l E0 · Y
(m)∗
L (k), CE L = 4π i l−1E0 · Y

(e )∗
L (k),

(10)

and the asterisk denotes a complex conjugate. In particular, for
the plane wave incident along the z axis and polarized along the
x axis (i.e., parallel to êϑ forϕ = 0),

CML= i l
√
(2l + 1)πE0 δm,±1,

CE L=±i l
√
(2l + 1)πE0 δm,±1,

where δmm′ is the Kronecker delta function. For an incident
dipole field, see Ref. [27].

Irrespective of the incident field, one has the following
explicit expressions for the constituent backward and forward
transfer matrices [27]:

T−Ml (n)=−i
(

η̃ζ ′l (x )ψl (x̃ )− µ̃ζl (x )ψ ′l (x̃ ) η̃ζ ′l (x )ζl (x̃ )− µ̃ζl (x )ζ ′l (x̃ )
−η̃ψ ′l (x )ψl (x̃ )+ µ̃ψl (x )ψ ′l (x̃ ) −η̃ψ ′l (x )ζl (x̃ )+ µ̃ψl (x )ζ ′l (x̃ )

)
, (11)

T−El (n)=−i
(

µ̃ζ ′l (x )ψl (x̃ )− η̃ζl (x )ψ ′l (x̃ ) µ̃ζ ′l (x )ζl (x̃ )− η̃ζl (x )ζ ′l (x̃ )
−µ̃ψ ′l (x )ψl (x̃ )+ η̃ψl (x )ψ ′l (x̃ ) −µ̃ψ ′l (x )ζl (x̃ )+ η̃ψl (x )ζ ′l (x̃ )

)
, (12)

T+Ml (n)=−i
(

ζ ′l (x̃ )ψl (x )/η̃− ζl (x̃ )ψ ′l (x )/µ̃ ζ ′l (x̃ )ζl (x )/η̃− ζl (x̃ )ζ ′l (x )/µ̃
−ψ ′l (x̃ )ψl (x )/η̃+ψl (x̃ )ψ ′l (x )/µ̃ −ψ ′l (x̃ )ζl (x )/η̃+ψl (x̃ )ζ ′l (x )/µ̃

)
, (13)

T+El (n)=−i
(

ζ ′l (x̃ )ψl (x )/µ̃− ζl (x̃ )ψ ′l (x )/η̃ ζ ′l (x̃ )ζl (x )/µ̃− ζl (x̃ )ζ ′l (x )/η̃
−ψ ′l (x̃ )ψl (x )/µ̃+ψl (x̃ )ψ ′l (x )/η̃ −ψ ′l (x̃ )ζl (x )/µ̃+ψl (x̃ )ζ ′l (x )/η̃

)
, (14)

where ψl (x )= x jl (x ) and ζl (x )= xh(1)l (x ) are the
Riccati–Bessel functions, prime denotes the derivative with
respect to the argument in parentheses, and

xn = knrn, η̃n = ηn/ηn+1, x̃n = xn/η̃n, µ̃n =µn/µn+1 .

For the sake of clarity, the n-subscript has been suppressed in
Eqs. (11)–(14). The above relations for T−γ l (n) and T+γ l (n) are
general and valid for any homogeneous and isotropic medium,
including magnetic materials withµn 6= 1.

It occurs that the formalism becomes compact if one intro-
duces the composite transfer matrices Tγ l (n) and Mγ l (n)
defined as ordered (from the left to the right) products of the
constituent forward and backward 2× 2 matrices:

Tγ l (n)=
1∏

j=n−1

T+γ l ( j ), Mγ l (n)=
N∏

j=n

T−γ l ( j ) .

Composite matrices Tγ l (n) and Mγ l (n) transfer expansion
coefficients from the sphere core to the n-th shell, and from the
surrounding medium to the n-th shell, respectively. Note that
Tγ l (n) is defined for 2≤ n ≤ N + 1, while Mγ l (n) is defined
for 1≤ n ≤ N. Analogous to Eq. (7), the following relations can
be applied:

[Tγ l (N + 1)]−1
=Mγ l (1), [Mγ l (1)]

−1
= Tγ l (N + 1) .

(15)

Note that the regularity condition given by Eq. (8), unambig-
uously determines the m-independent ratio Dγ L/Cγ L [53]:

Dγ L/Cγ L = T21;γ l (N + 1)/T11;γ l (N + 1) . (16)

Here, Ti j ;γ l (n) denotes the (i, j )-th element of the 2× 2
matrixTγ l (n).

Thus far, the electromagnetic field anywhere inside and out-
side a multilayered sphere is unambiguously determined from a
pair of expansion coefficients A(n) and B(n) for the respective
n-th shell (including the host medium denoted as (N + 1)-th
shell).

3. ENERGY WITHIN A MULTILAYERED SPHERE

The energy here will have the usual meaning of instant
power integrated over a cycle of harmonic excitation
[54–57]. The total electromagnetic energy W within the
multilayered sphere can be obtained by integrating the
electromagnetic energy radial density wn(r ) within each n-th

shell and, consequently, summing up the total electromagnetic
energies Wn stored in each n-th shell:

W =
N∑

n=1

Wn =

N∑
n=1

∫ rn

rn−1

wn(r )r 2dr , (17)
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where r0 = 0 for the core, and

wn(r )=
1

4

∮ [
G e (εn) |E(r)|

2
+ Gm (µn) |H(r)|

2] d� .

(18)
Here, G e (εn)= Re(εn) and Gm(µn)= Re(µn) in the
non-dispersive case [46]. For dispersive and absorbing metal-
lic shells, Gm remains the same, while G e can be described
by Loudon’s formula [54]: G e = [Re(εn)+ 2ωIm(εn)/0n],
with 0n being the free electron damping constant in the Drude
formula.

Angular integration of |E|2 and |H|2 in Eq. (18) in any shell
can be performed as follows (see Appendix B for details):∮
|E|2d�=

∞∑
l=1

l∑
m=−l

[
| fMlm |

2
+

l + 1

2l + 1
| fE ,l−1,m |

2

+
l

2l + 1
| fE ,l+1,m |

2

]
, (19)

∮
|H|2d�=

|εn|

|µn|

∞∑
l=1

l∑
m=−l

[
| fElm |

2
+

l + 1

2l + 1
| fM,l−1,m |

2

+
l

2l + 1
| fM,l+1,m |

2

]
.

(20)

The spherical Bessel functions of the order l ± 1 here originate
from eliminating the radial derivation in FE L of Eq. (2) by the
identity (B2) in Appendix B.

Below we present exact analytic expressions for each of the
above quantities, i.e.,wn(r ), Wn , and W . There are two impor-
tant steps. The first is the summation over m in Eqs. (19) and
(20), which we perform by (i) factorizing fγ L , and then (ii)
using sum rules for Cγ L . The second is a radial integration in
Eq. (17), which we implement by using Lommel’s integration
formulas in Appendix C.

A. Factorization of Expansion Coefficients

Expansion coefficients Aγ L(n) and Bγ L(n) can be reformulated
via forward Tγ l (n) and backward Mγ l (n) composite transfer
matrices as follows:

Aγ L(n)=M11;γ l (n)Cγ L +M12;γ l (n)Dγ L

=Cγ L

[
M11;γ l (n)+M12;γ l (n)

T21;γ l (N + 1)

T11;γ l (N + 1)

]
,

(21)

Bγ L(n)=M21;γ l (n)Cγ L +M22;γ l (n)Dγ L

=Cγ L

[
M21;γ l (n)+M22;γ l (n)

T21;γ l (N + 1)

T11;γ l (N + 1)

]
.

(22)

Note that in this representation, coefficients Aγ L and Bγ L are
products of m-dependent Cγ L and m-independent expression
in square brackets. Due to the linearity of the equations and

spherical symmetry of the problem (the latter being reflected in
m-independent transfer matrix elements), each of the expansion
coefficients Aγ L and Bγ L can be factorized as a product of a
m-dependent factor resulting from m-dependence of the expan-
sion coefficients Cγ L , and a m-independent factor coming from
the transfer matrices:

Aγ L(n)=Cγ L Āγ l (n), Bγ L(n)=Cγ L B̄γ l (n).

Hence, each fγ L factorizes as

fγ L =Cγ L f̄γ l , (23)

where m-independent f̄γ l is explicitly defined as

f̄γ l = Āγ l (n) jl (knr )+ B̄γ l (n)h
(1)
l (knr ). (24)

Note that in Eqs. (19) and (20), one has to consider the radial
solutions as indexed byγ , l , and l ± 1:

f̄γ l±1(n)= Āγ l (n) jl±1(knr )+ B̄γ l (n)h
(1)
l±1(knr ). (25)

Since the spherical Bessel functions of the order l ± 1 in
Eqs. (19) and (20) originate from eliminating the radial
derivation in FE L of Eq. (2) according to the identity (B2) in
Appendix B, they are multiplied by the expansions coefficients
Āγ l and B̄γ l carrying the index l .

After the factorization given by Eq. (23), integral in Eq. (19)
reads as∮
|E|2 d�=

∑
l=1

[
| f̄Ml |

2
l∑

m=−l

|CMlm |
2

+

(
l + 1

2l + 1
| f̄E ,l−1|

2
+

l
2l + 1

| f̄E ,l+1|
2

) l∑
m=−l

|CElm |
2

]
.

(26)

Note that Eq. (20) is factorized in a similar manner.

B. Sum Rules

One can eliminate the m-dependence in Eq. (26) recalling
Eq. (10) for Cγ lm and using the sum rules [58,59] for magnetic
Y(m)L (r) and electric Y(e )L (r) vector spherical harmonics:

l∑
m=−l

YL(r)⊗ Y∗L(r)=
2l + 1

8π

(
êϑ ⊗ êϑ + êϕ ⊗ êϕ

)
,

where⊗ denotes the tensor product. Thus, for plane-wave inci-
dence, the m-dependence in Eq. (26) yields

l∑
m=−l

|E0 · Y
(m,e )∗
L |

2
=

2l + 1

8π

(
|Eθ |2 + |Eφ|2

)
=

2l + 1

8π
|E0|

2,

which is also applicable to a factorized representation of
Eq. (20). For an incident dipole field, see Ref. [27].

C. Electromagnetic Energy Radial Density

After the factorization of Eqs. (19) and (20), and subsequent
summation over the magnetic number m, we end up with
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expressions for the electric,∮
|E|2d�= 2π |E0|

2

×

∞∑
l=1

[(2l + 1)| f̄Ml |
2
+ (l + 1)| f̄E ,l−1|

2
+ l | f̄E ,l+1|

2
],

(27)

and magnetic,∮
|H|2d�= 2π |E0|

2 |εn|

|µn|

×

∞∑
l=1

[(2l + 1)| f̄El |
2
+ (l + 1)| f̄M,l−1|

2
+ l | f̄M,l+1|

2
],

(28)

components of the electromagnetic field.
Thus, the electromagnetic energy radial density in Eq. (18)

is explicitly defined with analytic expressions in Eqs. (27)
and (28).

D. Total Electromagnetic Energy

Finally, the radial integration of Eqs. (27) and (28) in Eq. (17)
can be performed by using Lommel’s integration formulas (see
Appendix C for details):∫ rn

rn−1

r 2dr
∮
|E|2d�= 2π |E0|

2 r 3

x 2 − x ∗2

×

∞∑
l=1

[(2l + 1)F̄Ml + (l + 1)F̄E ,l−1 + l F̄E ,l+1]

∣∣∣∣∣
r=rn

r=rn−1

,

(29)∫ rn

rn−1

r 2dr
∮
|H|2d�= 2π |E0|

2 r 3

x 2 − x ∗2
|εn|

|µn|

×

∞∑
l=1

[(2l + 1)F̄El + (l + 1)F̄M,l−1 + l F̄M,l+1]

∣∣∣∣∣
r=rn

r=rn−1

.

(30)

Here, x = knr , and purely imaginary functions

F̄γ l = x f̄γ,l+1(x ) f̄ ∗γ l (x )− x ∗ f̄γ l (x ) f̄ ∗γ,l+1(x )

= 2iIm[x f̄γ,l+1(x ) f̄ ∗γ l (x )] (31)

are cancelled by purely imaginary x 2
− x ∗2 = 4iRe(x )Im(x )

in the denominator, which results in purely real integrals in
Eqs. (29) and (30).

Substitution of Eqs. (29) and (30) into Eqs. (17) and (18)
yields an explicit expression for the total electromagnetic energy
Wn stored within each shell of the multilayered sphere. The
above relations are general and valid within any shell including
(N + 1)-th layer being a surrounding medium.

E. Normalized Electromagnetic Energy

In some cases, it is of practical use to estimate normalized
electromagnetic energy instead of its absolute value. For exam-
ple, the electromagnetic energy enhancement determines the
performance of the spherical particle in surface-enhanced
Raman spectroscopy [37,39] and plasmon-enhanced upcon-
version [32], and might be important in other cases [60–62].
To obtain the corresponding enhancement factor, one could
compare the energy stored within the n-th layer compared to
the energy stored in a lossless host medium of the same volume.
Given that in a homogeneous medium, |H|2 = (|εh |/|µh |)|E|2,
the angularly integrated electromagnetic energy density (18) of
the incident wave reduces in the lossless host medium to

w0 =w
(e )
0 +w

(m)
0 = 2π |E0|

2εh , w
(e ,m)
0 = π |E0|

2εh ,

where w(e )0 and w(m)0 represent electric and magnetic compo-
nents of the w0, respectively. These quantities can be used to
normalize the electromagnetic energy radial density wn(r )
in the presence of a general multilayered sphere at the radial
distance r from the sphere origin.

On using Eq. (17), the total electromagnetic energy stored
within the shell with thickness (rn − rn−1) characterized by a
lossless εh , is defined as

W0n =
2

3
π |E0|

2(r 3
n − r 3

n−1)εh .

This quantity can be used to normalize the total electromagnetic
energy Wn stored within n-th shell.

F. Convergence Criterion

For the completeness of the developed theory, it is insightful
to provide general remarks on the summation over l in Eqs.
(27)–(30). Numerical implementation of these equations
requires the truncation to some finite number lmax, which can be
defined for a particular value of the size parameter x = kr with a
widely used Wiscombe criterion [63]:

lmax =

 x + 4x 1/3
+ 1, 0.02≤ x ≤ 8

x + 4.05x 1/3
+ 2, 8< x < 4200

x + 4x 1/3
+ 2, 4200< x < 20000.

However, this criterion may vary for near and far fields [64].
For large values of the size parameter, one could face conver-

gence issues, because the theoretical treatment for multilayered
spherical particles inevitably involves calculation of the differ-
ence of the products of the Riccati–Bessel functions. The most
successful way to mitigate these issues is to factorize Riccati–
Bessel functions with their logarithmic derivatives as shown in
Ref. [8].

4. SPECIAL CASES

Although presented formalism is rigorous and valid for a general
multilayered sphere, it is insightful to discuss some special cases
and provide corresponding explicit expressions, which might be
handier to use.
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A. Core Region

For the core region, with n = 1, Eq. (21) reduces on using
Eq. (15) to

Aγ L(1)=
Cγ L

T11;γ l (N + 1)
. (32)

Note that Bγ L = 0 due to the regularity condition given in
Eq. (8). Thus, on using Eq. (32) and Eqs. (23)–(25),

f̄γ l =
jl (k1r )

T11;γ l (N + 1)
, f̄γ l±1 =

jl±1(k1r )
T11;γ l (N + 1)

. (33)

We emphasize that f̄γ l and f̄γ l±1 have the same denominator
according to Eqs. (24) and (25).

Thus, the total electromagnetic energy stored inside a core of
a general multilayered sphere extending from r = 0 to r = r1
reads as

W1 =

∫ r1

0
w1(r )r 2dr =

π |E0|
2

2

r 3
1

x 2
1 − x ∗21

×

∞∑
l=1

{
(2l + 1)F̄ (1)

l

[
G e (ε1)

|T11;Ml (N + 1)|2
+
|ε1|

|µ1|

Gm (µ1)

|T11;El (N + 1)|2

]

+(l + 1)F̄ (1)
l−1

[
G e (ε1)

|T11;El (N + 1)|2
+
|ε1|

|µ1|

Gm (µ1)

|T11;Ml (N + 1)|2

]

+l F̄ (1)
l+1

[
G e (ε1)

|T11;El (N + 1)|2
+
|ε1|

|µ1|

Gm (µ1)

|T11;Ml (N + 1)|2

]}
, (34)

where F̄ (1)
l = 2iIm[x1 jl+1(x1) j ∗l (x1)].

Known results for the electromagnetic energy within a non-
magnetic [46] and magnetic [47] homogeneous sphere can be
recovered from Eq. (34) by considering the special case of
N = 1.

B. Lossless Shell

The lossless shell case can be obtained by taking the limit
Im(η)→ 0, which yields in x = x ∗, and, as a consequence, van-
ishing of the denominator in Eqs. (29) and (30). After applying
l’Hôpital’s rule (see Appendix C for details), Eqs. (29) and (30)
read as∫ rn

rn−1

r 2dr
∮
|E|2d�= π |E0|

2 r 3

x

×

∞∑
l=1

[(2l + 1)3̄Ml + (l + 1)3̄E ,l−1 + l3̄E ,l+1]

∣∣∣∣∣
r=rn

r=rn−1

,

(35)∫ rn

rn−1

r 2dr
∮
|H|2d�= π |E0|

2 r 3

x
|εn|

|µn|

×

∞∑
l=1

[(2l + 1)3̄El + (l + 1)3̄M,l−1 + l3̄M,l+1]

∣∣∣∣∣
r=rn

r=rn−1

,

(36)

where r0 = 0, and m-independent parameter

3̄γ l = x (| f̄γ l |
2
+ | f̄γ l+1|

2)− (2l + 1)Re( f̄γ l f̄ ∗γ l+1). (37)

Of note, Eqs. (35)–(37) are also valid for a lossless core, although
appropriate expressions for f̄γ l and f̄γ l+1 from Eq. (33) have to
be used.

C. Electromagnetic Field in the Vicinity of a Sphere

Finally, for many applications, it is of interest to get the angular
averaged electric or magnetic field intensity outside a multi-
layered particle. Assuming the plane-wave incidence and the
corresponding plane-wave expansion in vector spherical wave
functions given by Eq. (9), the electric field outside a spherical
particle is defined as

E(r)=
∑
γ,L

[
Cγ L Jγ L(kh , r)+ Dγ L Hγ L(kh , r)

]
=

∑
L

Fγ L(kn, r)=
∑

L

Cγ L F̄γ L(kh , r), (38)

where fγ L in Fγ L are given by [27]

fγ L=Cγ L jl (knr )+ Dγ L h(1)l (knr )

=Cγ L

[
jl (khr )+ h l (khr )

T21;γ l (N + 1)

T11;γ l (N + 1)

]
=Cγ L f̄γ l .

(39)

Here, the m-dependent coefficients Cγ L are given by Eqs. (10)
and (16), for m-independent ratio Dγ L/Cγ L has been used.

One can now proceed as before when arriving at Eq. (27)
to yield formally in the same formula, but with f̄γ l given in
Eq. (39). Corresponding enhancement of the average electric
field intensity at the distance r > r N from the center of a spheri-
cal particle can be obtained after normalization Eq. (27) to
4π |E0|

2. The magnetic field enhancement near a multilayered
sphere can be obtained analogously.

5. DISCUSSION

For the sake of illustration, we apply theory developed here to
metallo–dielectric multilayered nanospheres. Appropriately
designed by well-developed fabrication procedures [65,66],
such nanoparticles attract significant attention since they may
extraordinarily absorb [67–69], scatter [70], or transmit [71–
73] electromagnetic irradiation, and serve as a platform for
photonic bandgap structures [74–77] or hyperbolic media [78].

Figure 2 shows the normalized electric energy radial density
w(e )n (r )/w(e )0 [which corresponds to the normalized electric
term in Eq. (18)] for widely used silica–gold nanospheres.
w(e )n (r )/w(e )0 is shown for a number of SiO2–Au spheres of dif-
ferent compositions, consisting of n = 1, 2, 3, 5 or seven layers
with varying thicknesses. It can be seen that our theory makes it
convenient to investigate the electromagnetic field localization
within the multilayered spheres. In a particular case of our study,
one can observe wavelength-dependent features of the electric
field localization within the various layers, depending on the
particle composition: w(e )n (r )/w(e )0 acquires maximum values
at different λ, from visible to near-IR, and within different
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Fig. 2. Normalized electric energy radial density within and in the
vicinity of the multilayered SiO2-Au spherical particles of fixed radius
r N = 70 nm embedded in a vacuum with εh =µh = 1. Refractive
index of SiO2 is assumed to be 1.45, while the experimental data
from Ref. [79] have been used for the refractive index of Au, with the
electron mean free path correction [80,81] for thin shells. Loudon’s
formula [54] for G e has been employed with corresponding data for
Drude model of Au [82]. Different spheres composition, as denoted
with colored bars on the bottom of each plot, with the rightmost 10 nm
corresponding to the surrounding vacuum, have been considered:
(a) solid Au sphere; (b), (c) SiO2/Au; (d)–(f ) Au/SiO2/Au; (g)–(k)
Au/SiO2/Au/SiO2/Au; and (l) Au/SiO2/Au/SiO2/Au/SiO2/Au
multilayered spheres.

layers. Taking as a benchmark the immediate exterior of a homo-
geneous Au sphere, significant energy density enhancements can
be observed both inside and outside the multilayered particles.

6. CONCLUSION

We have presented a self-consistent rigorous theory for the
electromagnetic energy within a general multilayered sphere,
which is applicable to general illumination. Our main focus
was on plane-wave illumination for which we obtained exact
analytic expressions for (i) the electromagnetic energy radial
density within and outside a multilayered sphere and (ii) the
total electromagnetic energy stored within its core and each of
its shells. Other types of excitation [12,13,15,16,27,83–85]
require substitution of corresponding expressions of expansion
coefficients Cγ L for those in Eq. (10).

The reported formalism is valid for a wide range of sphere
sizes and materials, including magnetic materials. Multilayered
spheres from anisotropic [86,87] or chiral [48] materials can
also be considered with the presented formalism after modi-
fication. We emphasize that known explicit expressions for
homogeneous [46,47] or core-shell [49,88] spherical particles
can be easily obtained on using our general formalism for a
special case of N = 1 or N = 2, correspondingly.

The theory developed here could have numerous applica-
tions. The most straightforward are heating and nonlinear
optics applications, which require the determination of |E|2 or
its higher powers. Although only the electric part of electromag-
netic energy has been traditionally extensively considered in the
literature, the recent development of all-dielectric nanopho-
tonics also paves the way to a variety of exciting phenomena
based on the manipulation of |H|2 [89–91], which also can
be realized with the multilayered spherical particles of appro-
priate composition [92]. In any case, a proper understanding
of energy density distribution may provide valuable insight in
many other situations, some of which are the subject of future
investigation.

Corresponding MATLAB routines, which include the theo-
retical treatment reported in this paper, are presented in Code
1, Ref. [93]. It is straightforward to modify the code to obtain
separate contributions for field intensities, and to determine the
stored and dissipated energies for dispersive and absorbing media
[54–57] (cf. also Appendix C of Ref. [27]). It is worthwhile to
emphasize that a numerical implementation of the developed
theory is of low computational cost due to the utilization of
explicit analytic expressions for the electromagnetic energy
density.

APPENDIX A: VECTOR SPHERICAL HARMONICS

The definition of the vector spherical harmonics from Eq. (2)
varies in the literature (compare, for instance, Bohren [7],
Jackson [53], Chew [94], and Mishchenko [95]). Here, we pro-
vide a “combined” representation for magnetic, longitudinal,
and electric vector spherical harmonics in spherical (ϕ, ϑ, r )
coordinates:

Y(m)L = i

√
(l −m)!
(l +m)!

√
2l + 1

4π l(l + 1)

×

[
êϑ

im P m
l (cos ϑ)

sin ϑ
− êϕ

dP m
l (cos ϑ)

dϑ

]
exp (imϕ) ,

Y(o)L = i

√
(l −m)!
(l +m)!

√
2l + 1

4π
P m

l (cos ϑ) exp (imϕ) êr ,

Y(e )L = i

√
(l −m)!
(l +m)!

√
2l + 1

4π l(l + 1)

×

[
êϑ

dP m
l (cos ϑ)

dϑ
+ êϕ

im P m
l (cos ϑ)

sin ϑ

]
exp (imϕ) ,

https://gitlab.com/iliarasskazov/stratify
https://gitlab.com/iliarasskazov/stratify
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where êϕ , êϑ , and êr are corresponding unit vectors, and P m
l (x )

are the associated Legendre functions of the first kind [96] of
degree l and order m:

P m
l (x )=

(−1)m

2l l !
(1− x 2)m/2

dl+m

dx l+m
(x 2
− 1)l .

APPENDIX B: ANGULAR INTEGRATION OF
MULTIPOLE FIELDS

Recalling the fact that vector spherical harmonics are orthonor-
mal, i.e., ∮

|Y(o ,m,e )L (r)|2d�= 1,

one obtains for the multipole field FML of Eq. (2):∮
|FML |

2d�= | fMl (kr )|2
∮
|Y(m)L (r)|2d�= | fMl (kr )|2.

(B1)

After substituting from Eq. (10.1.22) of [96] into Eq. (10.1.20)
of [96] in the recurrence relations for the spherical Bessel func-
tions,

(y fl )
′

y
= fl

′
+

fl

y
=

l + 1

2l + 1
fl−1 −

l
2l + 1

fl+1, (B2)

and the radial derivative in the multipole field FE L can be easily
eliminated:

FE L(kn, r)=

√
l(l + 1) fE L(knr )

knr
Y(o)L (r)

+

[
l + 1

2l + 1
fE ,l−1(knr )−

l
2l + 1

fE ,l+1(knr )
]

Y(e )L (r) .

(B3)

On using the orthonormality of Y(o ,m,e )L , together with Eq.
(10.1.19) of [96] applied to the contribution resulting from
∼ Y(o)L term, Eq. (B3) is transformed into∮

|FE L |
2d�=

l + 1

2l + 1
| fE ,l−1|

2
+

l
2l + 1

| fE ,l+1|
2. (B4)

Equations (B1) and (B4) are used to perform angular integration
of Eq. (18), which yields in Eq. (19) and Eq. (20).

APPENDIX C: LOMMEL’S INTEGRATION
FORMULAS

Consider the defining spherical Bessel equation of given order l :

d2Fl (kr )
dr 2

+
2

r
dFl (kr )

dr
+

[
k2
−

l(l + 1)

r 2

]
Fl (kr )= 0,

(C1)

where r is real in our case, and k is, in general, a complex
parameter.

Much the same as in the case of the Lommel formula for the
cylindrical Bessel equation ([97], Chap. V), the corresponding
Lommel formula for two arbitrary solutionsFl (ρr ) andGl (σ r )

(here, in general, σ 6= ρ are arbitrary complex numbers) of the
spherical Bessel equation Eq. (C1) with different parameter
values follows straightforwardly from the fact that

d

dr

[
Fl (ρr )

dGl (σ r )
dr

−
dFl (ρr )

dr
Gl (σ r )

]

=

[
Fl (ρr )

d2Gl (σ r )
dr 2

−
d2Fl (ρr )

dr 2
Gl (σ r )

]

=−
2

r

[
Fl (ρr )

dGl (σ r )
dr

−
dFl (ρr )

dr
Gl (σ r )

]
+(ρ2

− σ 2)Fl (ρr )Gl (σ r ),

where the latter expression can be recast as

d

dr

[
r 2

(
Fl (ρr )

dGl (σ r )
dr

−
dFl (ρr )

dr
Gl (σ r )

)]
= r 2 (ρ2

− σ 2)Fl (ρr )Gl (σ r ).

On integrating both sides, one immediately arrives at

(ρ2
− σ 2)

∫ r

Fl (ρr )Gl (σ r )r 2dr

= r 2

[
Fl (ρr )

dGl (σ r )
dr

−
dFl (ρr )

dr
Gl (σ r )

]
+ C,

(C2)

whereC is an integration constant.
In the limit ρ→ σ , the lhs of Eq. (C2) goes to zero, whereas

the rhs seems to be a nonzero function of r . After closer inspec-
tion, one finds that the square bracket on the rhs reduces
to the Wronskian Wr {Fl (σ r ), Gl (σ r )}. Any solution Fl

and Gl of Eq. (C1) of order l can be expressed as a linear
combination of spherical Bessel functions jl and nl with, in
general, complex coefficients [cf. Eq. (4)]. Subsequently, the
Wronskian Wr {Fl , Gl } breaks down into a sum of terms pro-
portional to Wr { jl (σ r ), jl (σ r )}, Wr {nl (σ r ), nl (σ r )}, and
Wr { jl (σ r ), nl (σ r )}. The first two factors are identically zero.
The last one is proportional to 1/r 2 {Eq. (10.1.6) [96]}, which
cancels the factor r 2 in front of the square bracket in Eq. (C2).
This means that the term with the square bracket on the rhs of
Eq. (C2) reduces to, in general, nonzero constant C̃ the limit
ρ→ σ . By taking the integration constant C in Eq. (C2) to be
just the opposite of the constant C̃, both sides of Eq. (C2) go to
zero to the limitρ→ σ , and the equality is preserved. The point
of crucial importance is that for any specific pair of spherical
Bessel functions Fl and Gl , there is a unique constant C, which
ensures equality in Eq. (C2) including the limit ρ→ σ . One
can thus readily apply l’Hôpital’s rule to investigate the limit
ρ→ σ of the expression∫ r

Fl (ρr )Gl (σ r )r 2dr =
r 2

ρ2 − σ 2

×

[
Fl (ρr )

dGl (σ r )
dr

−
dFl (ρr )

dr
Gl (σ r )

]
+

C
ρ2 − σ 2

.

(C3)
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Since the constant C naturally disappears after applying
l’Hôpital’s rule, or when performing definite integrals, it
does not impact final expressions and will be omitted below.

If one wants to consider the special case when Gl =F∗l , then,
as the result of complex conjugation, also the argument of Bessel
functions forming Fl becomes complex conjugated. An appro-
priate application of the Lommel’s first integral (C3) to this
special case is therefore

I(1)L =

∫ r

Fl (ρr )F∗l (σ r )r 2dr

=
r 2

ρ2 − σ ∗2

[
Fl (ρr )

dF∗l (σ r )
dr

−
dFl (ρr )

dr
F∗l (σ r )

]
,

(C4)

because F∗l (σ r ) satisfies the Bessel equation (C1) with
k = σ ∗. After using the recurrence relation for Bessel functions
{Eq. (10.1.22) of [96]}

dFl (kr )
dr

=
l
r
Fl (kr )− kFl+1(kr ),

one arrives at

I(1)L =
r 2

ρ2 − σ ∗2
[ρFl+1(ρr )F∗l (σ r )− σ ∗Fl (ρr )F∗l+1(σ r )].

In the special case ofσ ∗ = ρ∗,∫ r

Fl (ρr )F∗l (ρr )r 2dr =
∫ r

|Fl (ρr )|2r 2dr

=
r 2

ρ2 − ρ∗2
[ρFl+1(ρr )F∗l (ρr )− ρ∗Fl (ρr )F∗l+1(ρr )]

=
r 3

x 2 − x ∗2
[xFl+1(x )F∗l (x )− x ∗Fl (x )F∗l+1(x )],

(C5)

where x = ρr . The latter expression in square brackets
corresponds to our Eq. (31).

In the real limit ρ∗→ ρ, which corresponds to a lossless
core or a lossless shell in the current work, an application of
l’Hôpital’s rule and recurrence relations {Eqs. (10.1.21–22) of
[96]} for the Bessel functions in Eq. (C5) yields∫ r

|Fl (ρr )|2r 2dr =−
r 2

2ρ

[
ρrFl+1(ρr )

dF∗l (ρr )
d(ρr )

− ρrFl (ρr )
dF∗l+1(ρr )

d(ρr )

− Fl (ρr )F∗l+1(ρr )
]

=
r 3

2x
[x (|Fl (x )|2 + |Fl+1(x )|2)

− (2l + 1)Re(Fl (x )F∗l+1(x ))].

The latter expression in square brackets corresponds to our
Eq. (37).

REFERENCES
1. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from

two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
2. O. B. Toon and T. P. Ackerman, “Algorithms for the calculation of

scattering by stratified spheres,” Appl. Opt. 20, 3657–3660 (1981).
3. Z. S. Wu and Y. P. Wang, “Electromagnetic scattering for multilayered

sphere: recursive algorithms,” Radio Sci. 26, 1393–1401 (1991).
4. R. Bhandari, “Scattering coefficients for a multilayered sphere:

analytic expressions and algorithms,” Appl. Opt. 24, 1960–1967
(1985).

5. D. W. Mackowski, R. A. Altenkirch, and M. P. Menguc, “Internal
absorption cross sections in a stratified sphere,” Appl. Opt. 29,
1551–1559 (1990).

6. J. Sinzig and M. Quinten, “Scattering and absorption by spherical
multilayer particles,” Appl. Phys. A 58, 157–162 (1994).

7. C. F. Bohren and D. R. Huffman,Absorption and Scattering of Light by
Small Particles (Wiley-VCH, 1998).

8. W. Yang, “Improved recursive algorithm for light scattering by amulti-
layered sphere,” Appl. Opt. 42, 1710–1720 (2003).

9. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a
multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354
(2009).

10. R. A. Shore, “Scattering of an electromagnetic linearly polarized
plane wave by a multilayered sphere: obtaining a computational form
of Mie coefficients for the scattered field,” IEEE Antennas Propag.
Mag. 57(6), 69–116 (2015).

11. K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, “Mie cal-
culation of electromagnetic near-field for a multilayered sphere,”
Comput. Phys. Commun. 214, 225–230 (2017).

12. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a
sphere arbitrarily located in a Gaussian beam, using a Bromwich
formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

13. F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering
from a multilayered sphere located in an arbitrary beam,” Appl. Opt.
34, 7113–7124 (1995).

14. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan,
“Improved algorithm for electromagnetic scattering of plane
waves and shaped beams by multilayered spheres,” Appl. Opt.
36, 5188–5198 (1997).

15. R. Li, X. Han, L. Shi, K. F. Ren, and H. Jiang, “Debye series for
Gaussian beam scattering by a multilayered sphere,” Appl. Opt.
46, 4804–4812 (2007).

16. N. M. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal
nanoparticles in strongly confined beams: transmission, reflection
and absorption,” J. Eur. Opt. Soc. 4, 09014 (2009).

17. A. E. Neeves and M. H. Birnboim, “Composite structures for the
enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B
6, 787–796 (1989).

18. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical prop-
erties of core-shell nanocavities for enhanced second-harmonic
generation,” Phys. Rev. Lett. 104, 207402 (2010).

19. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and
P.-F. Brevet, “Nonlinear Mie theory for the second harmonic genera-
tion inmetallic nanoshells,” J. Opt. Soc. Am. B 29, 2213–2221 (2012).

20. J. A. Gordon and R. W. Ziolkowski, “The design and simulated
performance of a coated nano-particle laser,” Opt. Express 15,
2622–2653 (2007).

21. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E.
E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner,
“Demonstration of a spaser-based nanolaser,” Nature 460,
1110–1112 (2009).

22. N. Passarelli, R. A. Bustos-Marún, and E. A. Coronado, “Spaser and
optical amplification conditions in gold-coated active nanoparticles,”
J. Phys. Chem. C 120, 24941–24949 (2016).

23. N. Harris, M. J. Ford, and M. B. Cortie, “Optimization of plasmonic
heating by gold nanospheres and nanoshells,” J. Phys. Chem. B 110,
10701–10707 (2006).

24. B. S. Luk’yanchuk, A. E. Miroshnichenko, M. I. Tribelsky, Y. S.
Kivshar, and A. R. Khokhlov, “Paradoxes in laser heating of
plasmonic nanoparticles,” New J. Phys. 14, 093022 (2012).

https://doi.org/10.1063/1.1699834
https://doi.org/10.1364/AO.20.003657
https://doi.org/10.1029/91RS01192
https://doi.org/10.1364/AO.24.001960
https://doi.org/10.1364/AO.29.001551
https://doi.org/10.1007/BF00332172
https://doi.org/10.1364/AO.42.001710
https://doi.org/10.1016/j.cpc.2009.07.010
https://doi.org/10.1109/MAP.2015.2453885
https://doi.org/10.1109/MAP.2015.2453885
https://doi.org/10.1016/j.cpc.2017.01.017
https://doi.org/10.1364/JOSAA.5.001427
https://doi.org/10.1364/AO.34.007113
https://doi.org/10.1364/AO.36.005188
https://doi.org/10.1364/AO.46.004804
https://doi.org/10.2971/jeos.2009.09014
https://doi.org/10.1364/JOSAB.6.000787
https://doi.org/10.1103/PhysRevLett.104.207402
https://doi.org/10.1364/JOSAB.29.002213
https://doi.org/10.1364/OE.15.002622
https://doi.org/10.1038/nature08318
https://doi.org/10.1021/acs.jpcc.6b05240
https://doi.org/10.1021/jp0606208
https://doi.org/10.1088/1367-2630/14/9/093022


1600 Vol. 36, No. 9 / September 2019 / Journal of the Optical Society of America A Research Article

25. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J.
Halas, “Solar vapor generation enabled by nanoparticles,” ACSNano
7, 42–49 (2013).

26. A. E. Schlather, A. Manjavacas, A. Lauchner, V. S. Marangoni, C. J.
DeSantis, P. Nordlander, and N. J. Halas, “Hot hole photoelectro-
chemistry on Au@SiO2@Au nanoparticles,” J. Phys. Chem. Lett. 8,
2060–2067 (2017).

27. A. Moroz, “A recursive transfer-matrix solution for a dipole radiat-
ing inside and outside a stratified sphere,” Ann. Phys. (N.Y.) 315,
352–418 (2005).

28. A. Moroz, “Spectroscopic properties of a two-level atom interacting
with a complex spherical nanoshell,” Chem. Phys. 317, 1–15 (2005).

29. C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P.
Nordlander, and N. J. Halas, “Fluorescence enhancement of
molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933
(2014).

30. N. Sakamoto, T. Onodera, T. Dezawa, Y. Shibata, and H. Oikawa,
“Highly enhanced emission of visible light from core-dual-shell-type
hybridized nanoparticles,” Part. Part. Syst. Charact. 34, 1700258
(2017).

31. D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-
enhanced upconversion,” J. Phys. Chem. Lett. 5, 4020–4031
(2014).

32. I. L. Rasskazov, L. Wang, C. J. Murphy, R. Bhargava, and P. S.
Carney, “Plasmon-enhanced upconversion: engineering enhance-
ment and quenching at nano and macro scales,” Opt. Mater. Express
8, 3787–3804 (2018).

33. G. D. Moon, J. B. Joo, M. Dahl, H. Jung, and Y. Yin, “Nitridation and
layered assembly of hollow TiO2 shells for electrochemical energy
storage,” Adv. Funct. Mater. 24, 848–856 (2014).

34. L. Meng, R. Yu, M. Qiu, and F. J. García de Abajo, “Plasmonic nano-
oven by concatenation of multishell photothermal enhancement,”
ACSNano 11, 7915–7924 (2017).

35. A. D. Phan, N. B. Le, N. T. H. Lien, and K. Wakabayashi, “Multilayered
plasmonic nanostructures for solar energy harvesting,” J. Phys.
Chem. C 122, 19801–19806 (2018).

36. W. Li, A. Elzatahry, D. Aldhayan, and D. Zhao, “Core-shell structured
titanium dioxide nanomaterials for solar energy utilization,” Chem.
Soc. Rev. 47, 8203–8237 (2018).

37. A. K. Kodali, X. Llora, and R. Bhargava, “Optimally designed nanolay-
ered metal-dielectric particles as probes for massively multiplexed
and ultrasensitive molecular assays,” Proc. Natl. Acad. Sci. USA 107,
13620–13625 (2010).

38. O. Peña-Rodríguez and U. Pal, “Enhanced plasmonic behavior of
bimetallic (Ag-Au) multilayered spheres,” Nanoscale Res. Lett. 6, 279
(2011).

39. N. G. Khlebtsov and B. N. Khlebtsov, “Optimal design of gold
nanomatryoshkas with embedded Raman reporters,” J. Quant.
Spectrosc. Radiat. Transfer 190, 89–102 (2017).

40. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated
absorption and scattering properties of gold nanoparticles of differ-
ent size, shape, and composition: applications in biological imaging
and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

41. B. N. Khlebtsov and N. G. Khlebtsov, “Biosensing potential of silica/
gold nanoshells: sensitivity of plasmon resonance to the local
dielectric environment,” J. Quant. Spectrosc. Radiat. Transfer 106,
154–169 (2007).

42. R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles:
classes, properties, synthesis mechanisms, characterization, and
applications,” Chem. Rev. 112, 2373–2433 (2012).

43. C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann,
S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell,
M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas, and A. Joshi, “Au
nanomatryoshkas as efficient near-infrared photothermal transduc-
ers for cancer treatment: benchmarking against nanoshells,” ACS
Nano 8, 6372–6381 (2014).

44. V. I. Zakomirnyi, I. L. Rasskazov, S. V. Karpov, and S. P. Polyutov,
“New ideally absorbing Au plasmonic nanostructures for biomedi-
cal applications,” J. Quant. Spectrosc. Radiat. Transfer 187, 54–61
(2017).

45. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber,
“Local fields at the surface of noble-metal microspheres,” Phys. Rev.
B 24, 649–657 (1981).

46. A. Bott andW. Zdunkowski, “Electromagnetic energy within dielectric
spheres,” J. Opt. Soc. Am. A 4, 1361–1365 (1987).

47. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within
magnetic spheres,” J. Opt. Soc. Am. A 27, 992–1001 (2010).

48. T. J. Arruda, F. A. Pinheiro, and A. S. Martinez, “Electromagnetic
energy within single-resonance chiral metamaterial spheres,” J. Opt.
Soc. Am. A 30, 1205–1212 (2013).

49. T. J. Arruda, F. A. Pinheiro, and A. S. Martinez, “Electromagnetic
energy within coated spheres containing dispersive metamaterials,”
J. Opt. 14, 065101 (2012).

50. W. H. Peirce, “Numerical integration over the spherical shell,” Math.
Computation 11, 244 (1957).

51. D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning (Addison-Wesley, 1989).

52. R. Storn and K. Price, “Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim. 11, 341–359 (1997).

53. J. D. Jackson,Classical Electrodynamics, 3rd ed. (Wiley, 1999).
54. R. Loudon, “The propagation of electromagnetic energy through an

absorbing dielectric,” J. Phys. A 3, 233–245 (1970).
55. R. Ruppin, “Electromagnetic energy in dispersive spheres,” J. Opt.

Soc. Am. A 15, 524–527 (1998).
56. R. Ruppin, “Electromagnetic energy density in a dispersive and

absorptive material,” Phys. Lett. A 299, 309–312 (2002).
57. F. D. Nunes, T. C. Vasconcelos, M. Bezerra, and J. Weiner,

“Electromagnetic energy density in dispersive and dissipative
media,” J. Opt. Soc. Am. B 28, 1544–1552 (2011).

58. M. I. Mishchenko, “Light scattering by randomly oriented axially sym-
metric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).

59. J. D. Pendleton, “Sum rules for products of light scattering
functions,” J. Opt. Soc. Am. A 18, 610–613 (2001).

60. H. Xu, “Multilayered metal core-shell nanostructures for inducing a
large and tunable local optical field,” Phys. Rev. B 72, 073405 (2005).

61. A. E. Miroshnichenko, “Off-resonance field enhancement by spheri-
cal nanoshells,” Phys. Rev. A 81, 053818 (2010).

62. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Unconventional Fano
effect and off-resonance field enhancement in plasmonic coated
spheres,” Phys. Rev. A 87, 043841 (2013).

63. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt.
19, 1505–1509 (1980).

64. J. R. Allardice and E. C. Le Ru, “Convergence of Mie theory series:
criteria for far-field and near-field properties,” Appl. Opt. 53,
7224–7229 (2014).

65. H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled syn-
thesis and quantum-size effect in gold-coated nanoparticles,” Phys.
Rev. B 50, 12052–12056 (1994).

66. C. Graf and A. van Blaaderen, “Metallodielectric colloidal core-shell
particles for photonic applications,” Langmuir 18, 524–534 (2002).

67. K. Hasegawa, C. Rohde, and M. Deutsch, “Enhanced surface-
plasmon resonance absorption in metal-dielectric-metal layered
microspheres,” Opt. Lett. 31, 1136–1138 (2006).

68. V. Grigoriev, N. Bonod, J. Wenger, and B. Stout, “Optimizing
nanoparticle designs for ideal absorption of light,” ACS Photon.
2, 263–270 (2015).

69. K. Ladutenko, P. Belov, O. Peña-Rodríguez, A. Mirzaei, A. E.
Miroshnichenko, and I. V. Shadrivov, “Superabsorption of light by
nanoparticles,” Nanoscale 7, 18897–18901 (2015).

70. Z. Ruan and S. Fan, “Design of subwavelength superscattering
nanospheres,” Appl. Phys. Lett. 98, 043101 (2011).

71. C. Rohde, K. Hasegawa, and M. Deutsch, “Plasmon-assisted trans-
parency in metal-dielectric microspheres,” Opt. Lett. 32, 415–417
(2007).

72. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with
layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).

73. N. J. Hudak, B. S. Garrett, B. G. DeLacy, and M. S. Mirotznik,
“Iterative design of multilayered dielectric microspheres with tun-
able transparency windows,” J. Opt. Soc. Am. A 36, 705–715 (2019).

https://doi.org/10.1021/nn304948h
https://doi.org/10.1021/acs.jpclett.7b00563
https://doi.org/10.1016/j.aop.2004.07.002
https://doi.org/10.1016/j.chemphys.2005.05.003
https://doi.org/10.1021/nl501027j
https://doi.org/10.1002/ppsc.v34.12
https://doi.org/10.1021/jz5019042
https://doi.org/10.1364/OME.8.003787
https://doi.org/10.1002/adfm.201301718
https://doi.org/10.1021/acsnano.7b02426
https://doi.org/10.1021/acs.jpcc.8b05769
https://doi.org/10.1021/acs.jpcc.8b05769
https://doi.org/10.1039/C8CS00443A
https://doi.org/10.1039/C8CS00443A
https://doi.org/10.1073/pnas.1003926107
https://doi.org/10.1186/1556-276X-6-279
https://doi.org/10.1016/j.jqsrt.2017.01.027
https://doi.org/10.1016/j.jqsrt.2017.01.027
https://doi.org/10.1021/jp057170o
https://doi.org/10.1016/j.jqsrt.2007.01.015
https://doi.org/10.1021/cr100449n
https://doi.org/10.1021/nn501871d
https://doi.org/10.1021/nn501871d
https://doi.org/10.1016/j.jqsrt.2016.08.015
https://doi.org/10.1103/PhysRevB.24.649
https://doi.org/10.1103/PhysRevB.24.649
https://doi.org/10.1364/JOSAA.4.001361
https://doi.org/10.1364/JOSAA.27.000992
https://doi.org/10.1364/JOSAA.30.001205
https://doi.org/10.1364/JOSAA.30.001205
https://doi.org/10.1088/2040-8978/14/6/065101
https://doi.org/10.1090/S0025-5718-1957-0093910-1
https://doi.org/10.1090/S0025-5718-1957-0093910-1
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1088/0305-4470/3/3/008
https://doi.org/10.1364/JOSAA.15.000524
https://doi.org/10.1364/JOSAA.15.000524
https://doi.org/10.1016/S0375-9601(01)00838-6
https://doi.org/10.1364/JOSAB.28.001544
https://doi.org/10.1364/JOSAA.8.000871
https://doi.org/10.1364/JOSAA.18.000610
https://doi.org/10.1103/PhysRevB.72.073405
https://doi.org/10.1103/PhysRevA.81.053818
https://doi.org/10.1103/PhysRevA.87.043841
https://doi.org/10.1364/AO.19.001505
https://doi.org/10.1364/AO.53.007224
https://doi.org/10.1103/PhysRevB.50.12052
https://doi.org/10.1103/PhysRevB.50.12052
https://doi.org/10.1021/la011093g
https://doi.org/10.1364/OL.31.001136
https://doi.org/10.1021/ph500456w
https://doi.org/10.1039/C5NR05468K
https://doi.org/10.1063/1.3536475
https://doi.org/10.1364/OL.32.000415
https://doi.org/10.1103/PhysRevLett.100.113901
https://doi.org/10.1364/JOSAA.36.000705


Research Article Vol. 36, No. 9 / September 2019 / Journal of the Optical Society of America A 1601

74. A. Moroz and C. Sommers, “Photonic band gaps of three-
dimensional face-centred cubic lattices,” J. Phys. Condens. Matter
11, 997–1008 (1999).

75. A. Moroz, “Photonic crystals of coated metallic spheres,” Europhys.
Lett. 50, 466–472 (2000).

76. A. Moroz, “Metallo-dielectric diamond and zinc-blende photonic
crystals,” Phys. Rev. B 66, 115109 (2002).

77. D. D. Smith and K. A. Fuller, “Photonic bandgaps in Mie scattering by
concentrically stratified spheres,” J. Opt. Soc. Am. B 19, 2449–2455
(2002).

78. P. Wang, A. V. Krasavin, F. N. Viscomi, A. M. Adawi, J.-S. G. Bouillard,
L. Zhang, D. J. Roth, L. Tong, and A. V. Zayats, “Metaparticles: dress-
ing nano-objects with a hyperbolic coating,” Laser Photon. Rev. 12,
1800179 (2018).

79. P. B. Johnson and R. W. Christy, “Optical constants of the noble met-
als,” Phys. Rev. B 6, 4370–4379 (1972).

80. A. Moroz, “Electron mean free path in a spherical shell geometry,”
J. Phys. Chem. C 112, 10641–10652 (2008).

81. R. Ruppin, “Nanoshells with a gain layer: the effects of surface scat-
tering,” J. Opt. 17, 125004 (2015).

82. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plas-
monic nanoshell: the effects of surface scattering and alternatives to
gold and silver,” J. Phys. Chem. C 113, 3041–3045 (2009).

83. F. Frezza, F. Mangini, and N. Tedeschi, “Electromagnetic scattering
by two concentric spheres buried in a stratifiedmaterial,” J. Opt. Soc.
Am. A 32, 277 (2015).

84. F. Frezza and F. Mangini, “Electromagnetic scattering of an inhomo-
geneous elliptically polarized plane wave by a multilayered sphere,”
J. Electromagn.Waves 30, 492–504 (2016).

85. W. L. Moreira, A. A. R. Neves, M. K. Garbos, T. G. Euser, and C.
L. Cesar, “Expansion of arbitrary electromagnetic fields in terms
of vector spherical wave functions,” Opt. Express 24, 2370–2382
(2016).

86. Y.-L. Geng, X.-B. Wu, L.-W. Li, and B.-R. Guan, “Electromagnetic
scattering by an inhomogeneous plasma anisotropic sphere of
multilayers,” IEEE Trans. Antennas Propag. 53, 3982–3989 (2005).

87. C.-W. Qiu, S. Zouhdi, and A. Razek, “Modified spherical wave func-
tions with anisotropy ratio: application to the analysis of scattering by
multilayered anisotropic shells,” IEEE Trans. Antennas Propag. 55,
3515–3523 (2007).

88. T. Kaiser, S. Lange, and G. Schweiger, “Structural resonances in a
coated sphere: investigation of the volume-averaged source function
and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).

89. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A.
Alù, “Modifying magnetic dipole spontaneous emission with
nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).

90. J. Li, N. Verellen, and P. Van Dorpe, “Enhancing magnetic dipole
emission by a nano-doughnut-shaped silicon disk,” ACS Photon. 4,
1893–1898 (2017).

91. P. R. Wiecha, C. Majorel, C. Girard, A. Arbouet, B. Masenelli,
O. Boisron, A. Lecestre, G. Larrieu, V. Paillard, and A. Cuche,
“Enhancement of electric and magnetic dipole transition of
rare-earth-doped thin films tailored by high-index dielectric
nanostructures,” Appl. Opt. 58, 1682–1690 (2019).

92. D. Tzarouchis and A. Sihvola, “Light scattering by a dielectric sphere:
perspectives on theMie resonances,” Appl. Sci. 8, 184 (2018).

93. I. L. Rasskazov, “STRATIFY GitLab,” 2019, https://gitlab.com/
iliarasskazov/stratify.

94. M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman
scattering (SERS) by molecules adsorbed at spherical particles,”
Appl. Opt. 19, 3373–3388 (1980).

95. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering,
Absorption, and Emission of Light by Small Particles (Cambridge
University, 2002).

96. M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, 1973).

97. G. N. Watson, A Treatise on the Theory of Bessel Functions,
CambridgeMathematical Library (Cambridge University, 1995).

https://doi.org/10.1088/0953-8984/11/4/007
https://doi.org/10.1209/epl/i2000-00292-4
https://doi.org/10.1209/epl/i2000-00292-4
https://doi.org/10.1103/PhysRevB.66.115109
https://doi.org/10.1364/JOSAB.19.002449
https://doi.org/10.1002/lpor.v12.11
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1021/jp8010074
https://doi.org/10.1088/2040-8978/17/12/125004
https://doi.org/10.1021/jp810808h
https://doi.org/10.1364/JOSAA.32.000277
https://doi.org/10.1364/JOSAA.32.000277
https://doi.org/10.1080/09205071.2015.1121842
https://doi.org/10.1364/OE.24.002370
https://doi.org/10.1109/TAP.2005.859903
https://doi.org/10.1109/TAP.2007.910491
https://doi.org/10.1364/AO.33.007789
https://doi.org/10.1002/lpor.201600268
https://doi.org/10.1021/acsphotonics.7b00509
https://doi.org/10.1364/AO.58.001682
https://doi.org/10.3390/app8020184
https://gitlab.com/iliarasskazov/stratify
https://gitlab.com/iliarasskazov/stratify
https://doi.org/10.1364/AO.19.003373

