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Collective lattice resonances (CLRs) in finite-sized 2D
arrays of dielectric nanospheres have been studied via the
coupled dipole approximation. We show that even for suf-
ficiently large arrays, up to 100 × 100 nanoparticles (NPs),
electric or magnetic dipole CLRs may differ significantly
from the ones calculated for infinite arrays with the same
NP sizes and interparticle distances. The discrepancy is
explained by the existence of a sufficiently strong cross-
interaction between electric and magnetic dipoles induced
at NPs in finite-sized lattices, which is ignored for infinite
arrays. We support this claim numerically and propose
an analytic model to estimate a spectral width of CLRs for
finite-sized arrays. Given that most of the current theoreti-
cal and numerical researches on collective effects in arrays
of dielectric NPs rely on modeling infinite structures, the
reported findings may contribute to thoughtful and optimal
design of inherently finite-sized photonic devices. © 2019
Optical Society of America

https://doi.org/10.1364/OL.44.005743

All-dielectric nanophotonics is a rapidly growing field in
modern physics [1] that provides a low-loss platform for an
impressive number of applications such as color printing [2],
biosensing [3–5], lasing [6], waveguiding [7–9], and flat [10,11]
and nonlinear [12–14] optics. While even a single dielectric
nanoparticle (NP) may exhibit extraordinary electromagnetic
response [15,16], its periodic array possesses a richer variety
of properties, extensively discussed recently [17–21]. Such
interest in regular arrays of dielectric NPs is justified (among
other factors) by the emergence of a tunable high-quality-factor
lattice-mediated electromagnetic response that gives rise to
collective lattice resonances (CLRs) [22–24]. CLRs originate
from the strong electromagnetic coupling between NPs com-
prising the lattice, which usually occurs at wavelengths close
to the Wood–Rayleigh anomalies [25,26] of the lattice. This

phenomenon has been extensively discussed for plasmonic NPs
[27–33] with strong electric dipole (ED) resonances, and for
all-dielectric NPs with ED and magnetic dipole (MD) optical
resonances [34–37].

To date, the overwhelming majority of studies on CLRs
deal with infinitely large arrays of NPs and ignore the presence
of physical boundaries of arrays, either in full-field simula-
tions [38–40] or dipole [41–44] and higher-order [45,46]
semi-analytic approximations. It is commonly assumed that
boundary effects are negligible for large arrays synthesized in
experimental studies; thus, an infinite-array model is often
considered as a satisfactory approximation. Nonetheless, the
effects of the finite size have been thoroughly discussed for
CLRs in regular nanostructures with Au [47–49], Ag [49–52],
and graphene [49] constituents via the dipole approxima-
tion. Generally, one could expect the quality factor of CLRs in
20× 20 and larger arrays of plasmonic NPs to be close to that of
infinite arrays. However, in Refs. [47–51], NPs are considered
as purely EDs, since ED oscillations predominate in plasmonic
NPs. Thus, it is not obvious a priori, how CLRs in finite-sized
arrays of dielectric NPs with strong ED and MD resonances
differ from CLRs in infinite arrays, though brief discussions of
up to 21× 21 [17] and 30× 30 [37] Si NP arrays have been
reported recently. In this Letter, we address this problem and
find regimes where the “infinite array” approximation is no
longer reliable for CLRs in arrays of dielectric NPs with both ED
and MD resonances.

Figure 1 shows a 2D array of Ntot = N × N identical spheri-
cal NPs embedded in a vacuum and illuminated by a plane wave
with Einc(r)= E0 exp(ik · r) and Hinc(r)=H0 exp(ik · r),
where E0 = (E0x , 0, 0) and H0 = (0, H0y , 0) are ampli-
tudes of the electric and magnetic fields, respectively, and k is
a wave vector. The time dependence exp(−iωt) is assumed
and suppressed. Each NP is considered as a point dipole, so ED
and MD moments di and mi induced on the i -th particle are
coupled to dipoles on other j 6= i particles and to the incident
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Fig. 1. Sketch of considered 2D array from N × N spherical NPs
with radius R and center-to-center distances h x and h y along X and Y
directions.

field [41,53,54]:

di = α
e

Einc(ri )+

Ntot∑
j 6=i

G i j d j −

Ntot∑
j 6=i

gi j ×m j

 , (1a)

mi = α
m

Hinc(ri )+

Ntot∑
j 6=i

G i j m j +

Ntot∑
j 6=i

gi j × d j

 , (1b)

where αe ,m are ED and MD polarizabilities [55], and× denotes
a vector product. Tensor G i j and vector gi j describe the inter-
action between i -th and j -th dipoles [41,53,54]. Note that G i j
is responsible for interaction between dipoles of the same kind
(ED↔ ED or MD↔MD), while gi j stands for ED↔MD
cross-interaction.

The essence of CLRs can be understood from a closed-form
analytical solution of Eq. (1) obtained for the infinite array
[29,41]. In this case, di = d ‖ E0 and mi =m ‖H0 for each NP
[41]; therefore, the last terms in Eq. (1) vanish, since E0⊥H0.
Thus, for a special case of a regular 2D lattice illuminated with a
normally impinging wave with |E0| = E0x and |H0| = H0y , the
non-zero components of d and m are

dx = E0x/
(
1/αe
− G0

x x

)
, m y = H0y /

(
1/αm

− G0
y y

)
,

(2)
where G0

x x and G0
y y are diagonal elements of 3× 3 tensor

G0
=
∑
∞

j=2 G1 j , and (1/αe ,m
− G0

x x ,y y )
−1 are effective electric

and magnetic polarizabilities that capture the features of the
NP’s surrounding [33,41,47]. The summation in G0 implies
the use of the non-trivial Ewald method well known for 1D [56]
and 2D [57] lattices, which thus has been implemented in this
work.

From the analysis of Eq. (2), one could expect to observe
resonances if Re(1/αe ,m

− G0
x x ,y y ) vanishes for either ED

or MD moments. Indeed, Fig. 2(a) shows that the dimen-
sionless representation of the above parameter becomes
zero near λ≈ h y and λ≈ h x for dx and m y , respectively,
which corresponds to (0,±1) and (±1, 0) Wood–Rayleigh
anomalies. Note that in the general case of h x 6= h y consid-
ered here, a simple rotation of the incident field polarization,
e.g., (E0x , 0, 0)→ (0, E0y , 0), does not yield the inter-
change between ED and MD CLR spectral positions, since
it implies only the interchange G0

x x ↔ G0
y y in Eq. (2), which

will likely violate the Re(1/αe ,m
− G0

x x ,y y )= 0 condition

Fig. 2. (a) Real parts of normalized denominators of Eq. (2), which
correspond to dx (ED) and m y (MD); (b) extinction efficiency for
infinite (∞) and for N × N finite-sized arrays. Dashed vertical lines
show the spectral positions of (0,±1) and (±1, 0) Wood–Rayleigh
anomalies; (c), (d) zoomed-in spectra for ED and MD CLRs, respec-
tively. Dashed vertical lines indicate the position of the CLR peak for
the infinite array. Arrays from Si NPs (refractive index from [58]) with
R = 65 nm, h x = 580 nm, and h y = 480 nm are considered.

due to G0
x x 6= G0

y y and non-trivial wavelength dependence of
polarizabilitiesαe ,m(λ) (Fig. 4 in [41]).

To characterize the electromagnetic response of the
finite-sized array, we use the extinction efficiency [41,54]

Qfin
ext =

4k
|E0|

2 Ntot R2
Im

Ntot∑
i=1

[
di · E∗inc(ri )+mi ·H∗inc(ri )

]
,

(3)
where the asterisk denotes a complex conjugate, and di and mi
are defined from the solution of Eq. (1). For an infinite array,
after substituting Eq. (2) in Eq. (3), one gets

Qinf
ext =

4k
R2

Im
[(

1/αe
− G0

x x

)−1
+
(
1/αm

− G0
y y

)−1
]

. (4)

We are now ready to consider Qext for infinite and finite-sized
arrays. Figure 2(b) shows that extinction spectra for finite-sized
arrays gradually approach the spectrum for the infinite lattice as
N increases, which is consistent with reported trends for arrays
of plasmonic NPs [47,49]. Indeed, ED CLR at λ≈ 490 nm for
arrays with Ntot > 50× 50 becomes almost indistinguishable
from one for the infinite array, as it is clearly seen in Fig. 2(c).
Of note, for plasmonic NP arrays, the corresponding “thresh-
old,” when Qext becomes almost the same for finite and infinite
lattices, is ≈ 20× 20 NPs [47]. Analogously, Qext for an MD
CLR at λ≈ 586 nm in finite-sized arrays becomes similar to the
infinite case if N grows, as shown in Fig. 2(d). However, what
is really surprising and unexpected is that Qext of finite-sized
arrays is noticeably different even for the Ntot = 100× 100
case. Moreover, the Fano-type profile for CLRs [30] in Fig. 2(d)
is significantly different for infinite and finite-sized arrays
near λ≈ h x , which implies the existence of non-negligible
electromagnetic interaction emerging in finite-sized arrays.

To understand and explain these trends, we recall the differ-
ence between Eqs. (1) and (2), i.e., the last terms of Eqs. (1a) and
(1b), which, respectively, provide the electric field at the i -th
NP mediated by MDs on other j 6= i NPs and, vice versa, the
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Fig. 3. Normalized intensities of electric field induced by MDs
(left) and of magnetic field induced by EDs (right) for N × N arrays
at wavelengths that correspond to peaks of ED (left) and MD (right)
CLRs [see Figs. 2(b)–2(d) for details]: (a) 493 nm, (b) 588 nm,
(c) 490 nm, (d) 586.5 nm. Each dot represents the NP, and the actual
sizes of arrays vary for different N × N.

magnetic field at the i -th NP mediated by EDs. Figure 3 shows
the corresponding intensities, i.e., |Emag|

2 and |Hel|
2, for each

NP in the array. It can be seen that the normalized intensity of
the electric field induced by MDs is quite small compared to the
incident field, and increases only at the boundaries of the array,
which again agrees well with results for plasmonic NPs [49]. The
maximum value of |Emag|

2/|E0|
2, which is already quite small

for 30× 30 arrays in Fig. 3(a), gradually decreases for larger
arrays, and almost vanishes for the 70× 70 array in Fig. 3(c),
thus providing a negligible difference for ED CLRs of infinite
and sufficiently large finite-sized arrays in Fig. 2(c). On the
contrary, the maximum intensity of the magnetic field induced
by electric dipoles, i.e., |Hel|

2/|H0|
2, increases for larger arrays,

and again a divergence takes places near the boundaries of the
array. Although the overall contribution of cross-interaction
between EDs and MDs to Qfin

ext gradually decreases as N grows,
the “boundary effect” is pronounced even for sufficiently large
arrays, and thus cannot be completely ignored in this case. In
other words, for MD CLR, the last term in Eq. (1b) has to be
taken into account to get a reliable estimate of the extinction
efficiency, which is clearly justified by the discrepancy between
Qext for infinite and finite arrays in Fig. 2(d).

Finally, to get even deeper insight, we provide the following
analytical considerations. For the electromagnetic field confined
in a finite volume, the corresponding wave vector is also dis-
tributed in a finite volume of the reciprocal space: 1r1kr & 1
[59]. In our case, the finiteness of the lattice mode in space is
determined by the lattice size 1r ≈ Nh x ,y , where N and h x ,y
correspond to the direction perpendicular to the polarization of
the respective component of the electromagnetic field (i.e., Nh x
for H0, and Nh y for E0). Thus, the confinement of the wave
vector in the reciprocal space is1kr ≈ 2π1λr /λ

2, which yields

Fig. 4. (a) ED and (b) MD CLRs spectral width1λ calculated with
Eq. (5) (analytical) and from data in Fig. 2(b) (numerical).

1λr &
h x ,y

2πN
(5)

for CLRs coupled with the (±1, 0) or (0,±1)Wood–Rayleigh
anomaly with λ≈ h x and λ≈ h y , respectively. Therefore, for
a given spectral width 1λinf of the CLR for the infinite array
[which is readily obtained via Eq. (4)], one can immediately
get its size-dependent counterpart with 1λ=1λinf +1λr
without extensive simulations of finite-sized arrays.

Figure 4 compares analytical estimates of 1λ with the cor-
responding numerical data from Fig. 2(b). One can see that,
indeed, Eq. (5) provides reliable estimates of1λ for sufficiently
large arrays (Ntot > 30× 30 and Ntot > 70× 70 for ED and
MD, respectively). It is worthwhile to emphasize that the pro-
nounced discrepancy between analytic approximation and
numerical calculations for smaller arrays supports the claim that
cross-interaction terms, ignored in Eq. (5), indeed matter for
CLRs in finite-sized arrays, especially for the MD case.

Here, we have considered arrays of NPs embedded in a
homogeneous environment under normal illumination via
the coupled dipole approximation, which is a quite insight-
ful approach valid for experimentally feasible setups [11].
Qualitatively similar effects are expected in homogeneous media
with refractive index 6= 1 or under oblique incidence, though
the position of the CLRs will be shifted due to the change in G0

and/or αe ,m [11,30]. We also anticipate that reported finite-
sized effects will likely emerge in a more sophisticated manner
for higher-order electromagnetic interactions [46,60,61] or in
non-homogeneous environments [62–65]. Even though we
have limited the discussion to Si NPs, the obtained results are
qualitatively valid for appropriately scaled arrays of dielectric
particles from other materials [66] at corresponding frequencies,
as long as CLRs are emerged. For instance, it is a well-known
practice to verify concepts of all-dielectric nanophotonics
with millimeter-sized ceramic particles under microwave
illumination [7,21].

To conclude, we have shown that the finite size of arrays of
dielectric NPs plays an important role for the emergence of both
ED and MD CLRs. We have demonstrated that ED↔MD
cross-interactions significantly contribute to both types of
CLRs, even in sufficiently large NP arrays, where such inter-
action is usually considered to be negligible. While ED CLRs
in finite-sized arrays converge to the infinite-array model for
≈ 50× 50 NPs, MD CLRs in finite-sized arrays are quite dif-
ferent from the ones of infinite arrays even for 100× 100 NPs;
thus, the common use of numerical and theoretical models
for infinite arrays should be handled with great caution. Given
that a significant number of works on CLRs in all-dielectric
nanostructures deal with numerical or theoretical considera-
tions of infinite arrays, we believe that the reported results may
lead to deeper understanding and more thoughtful research of
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electromagnetic phenomena in this rapidly developing field of
nanophotonics.
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