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I. INTRODUCTION

Surface plasmon polaritons (SPPs) that can be excited
under a variety of different physical scenarios in chains
of metal nanoparticles (plasmonic chains) is a topic of
vigorous ongoing research [1–8]. Applications related to
wave guiding, nanoscale manipulation and transport of optical
information, and minituarization of optoelecronic elements
have been envisioned. The laws governing the propagation
and decay of steady-state, monochromatic SPPs in infinite
or semi-infinite linear, perfectly periodic chains are well
understood at present [9–13]. Although a perfectly periodic
chain is obviously an idealization, it was shown that weak
disorder [9,14] or double periodicity [15] do not have a
dramatic effect on long-range SPP propagation. Dispersion
relations and transient processes (wave-packet transmission) in
plasmonic chains have also been studied [16–19]. In particular,
it was found that chains of spherical particles can not support
the propagation of well-formed wave packets due to the
flatness of the corresponding dispersion curves. However, this
problem can be alleviated by using chains of nonspherical
particles such as prolate or oblate spheroids [13,17], for
instance. Chains of this type can serve as broadband SPP
waveguides. The latter fact motivates our interest in various
types of chains composed of nonspherical plasmonic particles.

In the majority of previous publications on the subject,
straight linear chains have been considered. However, curved
chains are of both theoretical interest and of practical impor-
tance. It was shown experimentally and in simulations [20,21]
that parabolic chains of nanoparticles can focus and direct
SPPs. In these references, the parabolic chains were used
as reflectors and collimators of SPPs that propagate on the
metal/vacuum interface rather than as the structures that
support the SPPs. However, in a separate investigation [22],
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the propagation of SPPs directly in curved plasmonic chains
placed above a gold substrate was demonstrated in simulations.
The finding that SPPs can propagate in curved chains is
important because it is not clear a priori that a significant
curvature of a chain would not result in strong radiative losses
or in suppression of the field localization effect.

In this paper, we consider the propagation of SPPs in
curved chains of various shape with a special emphasis on
polarization effects. In this respect, there exists a qualitative
difference between straight and curved chains. In straight
chains, different orthogonal polarizations of the SPPs are
decoupled. In curved chains, this is no longer so. Coupling
of differently polarized SPPs results in new physical effects
that are not observed in linear chains, such as polarization
conversion. Below, we present a numerical investigation of
steady-state, monochromatic SPPs in curved chains of various
types (sharp and smooth corners and quarter-circles). We
consider chains made of spheroids of varying shape and
aspect ratio and study the amplitude decay, the polarization
conversion, and the field localization effects.

In the simulations reported below, we have used a number
of approximations and simplifying assumptions. First, we
use the point-dipole approximation, which is the simplest
theoretical model that can still capture some important
physical effects that occur in plasmonic chains. However,
the dipole approximation is expected to fail when the
interparticle spacing is too small. An alternative to the dipole
approximation is either the use of generalized Mie solution (the
coupled-multipole methods [23–25]) or numerical methods of
general applicability, such as finite difference or finite element
methods [7,18,26]. We note that the couple-multipole methods
are especially well-suited when the particles are made of new
low-loss materials [7,27] in which several multipole moments
(Mie resonances) are excited and the dipole approximation
is clearly insufficient, regardless of the interparticle distance.
However, extension of the generalized Mie solution beyond
the case of spherical particles is problematic and has not
been attempted to the best of our knowledge. On the other
hand, we are specifically interested in nonspherical particles.
The general-applicability numerical methods are also limited
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in utility due to their high computational complexity. Due
to these reasons, we chose to stay within the framework
of the dipole approximation while keeping the interparticle
distance reasonably large. It should be noted that the validity
of this approach was confirmed in simulations [18] and in a
combination of simulations and experiments [20–22].

Second, a remark is needed regarding the shape of the
nanoparticles that we use in the simulations. Although we dis-
cuss spheroids, it is neither practically possible nor important
for us that these particles are of perfect spheroidal shape. What
comes up in the simulation as an important parameter is the
depolarization factor. This quantity can be, to some level of
approximation, be introduced not only for perfect spheroids but
also for other shapes, such as truncated cylinders for example.

Third, we consider the plasmonic chains in free space and,
therefore, do not account for the presence of substrate or a host
medium. Coupling of the SPPs in a chain and a substrate results
in a number of new phenomena [4,15,28,29]. In particular, the
SPPs propagating in the chain and on the interface become
coupled and can exchange energy. A chain SPP that is perfectly
contained to the chain can become leaky near an interface and
radiate into selected angles. Polarization effects become also
more complex. An interesting finding is that reflective metal
interfaces do not necessarily suppress chain SPPs but can even
enhance transmission, in spite of the additional Ohmic losses
associated with substrate [4]. In this study, we restrict our
attention to chains in free space, which allows us to focus
on a few physical effects such as polarization conversion.
Experimentally, the model we use is relevant to substrates
whose refractive index is not too much different from unity at
the working frequency, such as the ordinary glass. As for the
host medium, its primary effect is to shift the spectral positions
of the optical resonances of individual particles.

The reminder of this paper is organized as follows. In
Sec. II, we explain the physical model used in numerical sim-
ulations. Numerical results for transmission and polarization
effects are given in Sec. III and results for field localization in
Sec. IV. Section V summarizes the results obtained.

II. THEORETICAL MODEL

We consider propagation of SPPs in curved chains of
spheres and prolate or oblate spheroids (ellipsoids of revo-
lution) of nanoscale dimensions. The dipole approximation is
used to model the SPP propagation. We work in the frequency
domain and use the phasor convention exp(−iωt); the latter
exponential factor is suppressed in all formulas. The vacuum
wave number at the working frequency is denoted by k = ω/c.
In the reminder of this section, we describe the geometry of the
chains used (Sec. II A), outline the basic formulas of the dipole
approximation (Sec. II B) and adduce the required formulas for
the polarizability tensors of the nanospheroids with the account
of appropriate dynamic corrections [30] (Sec. II C).

A. Geometry

The spheroids comprising a given chain are assumed to be
identical, with the longer and shorter semiaxes denoted by a

and b. The aspect ratio and the eccentricity of a spheroid are

defined by

ξ = b/a � 1, e =
√

1 − ξ 2, (1)

where b � a and the equality holds in the particular case
of spheres. Detailed information on all the chain geometries
that we have used in the simulations is provided in Fig. 1.
Specifically, we have considered chains built from N particles,
which can be spheres, oblate or prolate spheroids. The centers
of all spheroids lie in the plane z = 0 and one of the principal
axes of each spheroid is parallel to the Z axis. In addition, the
particles are oriented in space so that their axes of symmetry
are contained in the XY plane. In the case of prolate spheroids,
the axes of symmetry (shown by dashed lines in Fig. 1) are
perpendicular to the chain, while in the case of oblate spheroids
they are parallel.

According to their overall shape, the chains can be classified
as either corners, smooth corners or quarter-circles. All these
cases are shown in Fig. 1. In the case of smooth corners, the
particles are assembled into chains so that their centers are
connected by a curve in the XY plane, which consists of two
straight segments oriented parallel to the X and Y axes and
connected by a circular arc with the central angle π/2. In
the case of a corner, the circular arc is absent and the two
straight segments connect at a vertex. In the case of a quarter-
circle, the straight segments are absent and only a circular
arc is used. The distance h between the neighboring particle
centers measured along the curve is fixed. If we denote the
number of particles connected by the circular arc by Nc, then
the arc’s radius of curvature is R = 2h(Nc − 1)/π . We note
that in all cases where a circular arc was used, we have h � R.
Correspondingly, the center-to-center distance between the
neighboring particles is very close to h.

The specific geometrical parameters used in the simulations
are as follows. The total number of particles in all chains is N =
1001. In the case of corners, there is one corner particle at the
vertex and (N − 1)/2 = 500 particles in each straight segment
connected to the vertex. In the case of smooth corners, there are
Nc = (N + 1)/2 = 501 particles on the circular arc segment
and (N − 1)/4 = 250 particles in each straight segment. In the
case of quarter-circles, we have Nc = N .

Further, we have fixed the shorter semiaxis of all spheroids
to b = 8 nm and the inter-particle spacing along the curve to
h = 24 nm. The longer axes of the spheroids vary. With these
parameters, the total length of the chain is L = 24 μm and the
radius of curvature of the circular arcs used is R ≈ 7.64 μm
in the case of smooth corners and 15.28 μm for the quarter-
circles (twice as large).

B. Dipole approximation

Consider a chain of N spheroids centered at the points
rn and characterized by the tensor polarizability αn, where
n = 1, . . . ,N . Even though all spheroids in a given chain
are assumed to be identical, the tensors αn can be different
because the spheroids are, in general, differently oriented in
the XY plane. In our model, each spheroid can be obtained
from another spheroid in the same chain by a rotation about
the Z axis and translation in the XY plane. (Note that this is
different from the model of Ref. [22], where the nanospheroids
in a given chain differed only by translation, while their axes
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FIG. 1. Schematic top view of all chains used in the simulations. Note that prolate and oblate spheroids can not be distinguished when
viewed from top. However, the axes of symmetry in each case are oriented differently with respect to the chain, as is shown by the dashed lines.
The total number of particles in a chain is N and the number of particles connected by the circular arc segment of the chain is Nc (Nc = 0 for
corners). The longer and shorter semiaxes of the spheroid are denoted by a and b. The interparticle distance measured along the curve is h.

were kept parallel to the axes of the laboratory frame.) In the
dipole approximation, the dipole moments dn of the spheroids
are coupled to each other and to the external electric field by
the coupled-dipole equation [31]:

dn = αn

⎛
⎝En +

∑
m�=n

Gnmdm

⎞
⎠. (2)

Here, En is external (incident) electric field at the center of
nth nanoparticle and Gnm is the free-space frequency-domain
Green’s tensor for the electric field whose components are
given explicitly elsewhere [31].

To quantify the SPP propagation along the chain, we use
the formalism of normalized Green’s functions [9]. From the
linearity of (2), it is clear that the solution can be written as

dn =
∑
m

DnmEm, (3)

where Dnm is the Green’s tensor of the chain, which can be
obtained numerically (or, in the case of infinite [9] or semi-
infinite [10] linear chains, analytically). Here we consider

finite curved chains for which an analytical solution is not
available. Correspondingly, we will compute Dnm numerically
by standard methods of linear algebra.

Now assume that the chain is illuminated by a localized
(near-field) external source, which creates a fixed and given
amplitude E1 of the electric field at the center of the first
particle in the chain and negligibly small incident field
elsewhere. In this case, (3) takes the form dn = Dn1E1. We
then define the normalized scalar Green’s function as

Fn = |Dn1E1|
|D11E1| , (4)

where |x| = √
x∗ · x for any three-dimensional complex vector

x. Since Fn is a positive scalar, we can view it as the measure
of SPP decay. In particular, we will refer to FN as to the
transmission of the chain as a whole. It should be kept in mind
that the function Fn, as defined, is not independent of E1.
Indeed, the transmission of a given chain can depend on the
incident polarization.
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Note also that the scalar Green’s function Fn is not directly
measurable because any realistic external illumination can not
be strictly localized on the first particle of a chain. However, we
have verified that Fn is very close to the directly measurable
quantity |dn|/|d1|, where dn is obtained by solving (2) with
a more realistic external illumination pattern, as long as near-
field excitation is used. We have checked this statement by
taking En to be the field of a radiating dipole placed in close
proximity (that is, at a distance ∼h) of the first particle in a
chain and performing the relevant computations numerically.

C. Polarizability of a spheroid

The polarizability tensor of the n-th spheroid in a chain can
be written as

αn = α⊥I + (α‖ − α⊥)ûn ⊗ ûn, (5)

where I is the identity tensor, α⊥ and α‖ are the principal values
of αn and ûn is the unit vector parallel to the spheroid axis of
symmetry. In the case when the host medium is vacuum, α‖
and α⊥ are given by the formulas

1

α‖,⊥
= 3ξp

b3

(
ν‖,⊥ + 1

ε − 1

)
− k2

b
β‖,⊥ − 2ik3

3
, (6)

where p = 1 for prolate spheroids, p = 2 for oblate spheroids,
ν‖,⊥ are the static depolarization factors, k2β‖,⊥/b are the
second-order (in k) dynamic corrections to the inverse polariz-
ability [30], and the term −2ik3/3 is the third-order dynamic
correction (the first nonvanishing radiative correction [32]).
We note that first-order corrections, that is, terms of the order
of O(k) are absent in (6).

The static depolarization factors are given by the following
formulas. For prolate spheroids,

ν‖ = g2(e)

(
1

2e
ln

1 + e

1 − e
− 1

)
, ν⊥ = 1 − ν‖

2
, (7)

and for oblate spheroids,

ν⊥ = g(e)

2e2

[
π

2
− arctan g(e)

]
− g2(e)

2
, ν‖ = 1 − 2ν⊥.

(8)

Here,

g(e) =
√

1/e2 − 1 = ξ/
√

1 − ξ 2 . (9)

Note that for both prolate and oblate spheroids, ν‖ + 2ν⊥ = 1.
The second-order dynamic corrections are of the form [30]

β‖ = 3

4

{
ξ
(

1+e2

1−e2 ν‖ + 1
)

(prolate)

(1 − 2e2)ν‖ + 1 (oblate)
(10)

and

β⊥ = −β‖
2

+ 3ξ

2e

{
1
2 ln 1+e

1−e
(prolate)

arcsin(e) (oblate)
. (11)

In the last formula, an appropriate expression for β‖ from (10)
must be used, depending on whether the spheroid is prolate or
oblate.

Finally, we need to define the complex permittivity of
spheroids, ε. To this end, we use the Drude formula

ε = ε0 − ω2
p

ω(ω + iγ )
, (12)

where ωp is the plasma frequency, γ is the Drude relaxation
constant, and ε0 − 1 is the contribution due to the interband
transitions. In simulations, we have used the experimental
parameters for silver, viz. ωp/γ = 526.3 and ε0 = 5.0. We
did not modify the bulk permittivity of silver to account for
the finite size effects.

III. TRANSMISSION AND POLARIZATION EFFECTS

In this section, we study transmission and polarization
properties of the chains shown in Fig. 1. We will consider
propagation of SPPs at several excitation frequencies and
for different shapes of spheroids. We will also consider two
different linear polarizations of the incident electric field:
along the X and Y axes. In the first case (polarization along
X), the SPP is, initially, polarized transversely to the chain.
Upon propagation, the linear transverse polarization can be
partially converted to longitudinal polarization. As a result, the
SPP polarization at the intermediate particles in the chain is,
generally, elliptical. Similar situation takes place in the case
of the incident polarization along Y , when a longitudinally-
polarized SPP is partially converted to a transversely polarized
SPP. We note that the above polarization effects are absent in
linear chains wherein the transverse and longitudinal SPPs
are completely decoupled. In the case of curved chains, the
polarization phenomena are particularly complicated because
the transverse and longitudinal SPPs have different decay rates
and different laws of dispersion.

To quantify the polarization conversion effects, we adopt
the following notations. In the case of incident polarization
along the X axis, we write dn = x̂d

‖
n + ŷd⊥

n . Analogously, for
incident polarization along the Y axis, we write dn = x̂d⊥

n +
ŷd

‖
n . Here, d⊥

n and d
‖
n are projections of the vector dn onto

the directions that perpendicular and parallel to the incident
polarization, respectively. We then define the depolarization
ratio at nth spheroid as

δn = d⊥
n /d‖

n . (13)

In particular, δn = 0 or δn = ∞ corresponds to linear po-
larizations, while δn = 1 corresponds to circular polarization.

We start with the results for corner-shaped chains, which
are shown in Fig. 2. Propagation in the first straight segment
of the chain is similar to propagation in a linear chain, as
long as the point of observation is sufficiently far from the
vertex. The normalized scalar Green’s function Fn decays
either exponentially, if the excitation frequency is close
to the resonance frequency of an individual spheroid, or
drops sharply and then undergoes slow algebraic decay if
the excitation is off-resonance. The resonance frequency for
noninteracting spheroid can be found by solving the equation

3ξp

[
ν‖,⊥ + Re

1

ε(ω) − 1

]
=

(
ωb

c

)2

β‖,⊥ (14)
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FIG. 2. (Color online) Normalized Green’s function Fn and the depolarization ratio δn as functions of the spheroid number in the chain, n,
for corner-shaped chains constructed of various types of spheres and spheroids, different working frequencies ω, and different polarizations of
the electric field that is incident on the first particle in the chain, as labeled.

with respect to ω. Here the term in the right-hand side is due to
second-order dynamic correction to polarizability. Interaction
of spheroids in the chain can shift the resonant frequency albeit
insignificantly.

A pronounced example of resonant excitation and corre-
sponding exponential decay can be found in chains made of
prolate spheroids with ξ = 0.3 (Fig. 2). In this case, reso-
nant excitation occurs at ω = 0.20ωp for transverse incident
polarization and for ω = 0.36ωp for longitudinal incident
polarization. In both cases, the dependence ofFn on n contains
a well-pronounced linear segment in the double-logarithmic
scale of the plot. However, for permuted parameters, that is,
for ω = 0.36ωp and transverse incident polarization or ω =
0.20ωp and longitudinal incident polarization, the excitation
is off-resonance. In this case, the function Fn drops by several
orders of magnitude over just a few chain periods and then
undergoes a relatively slow algebraic decay. This behavior

of Fn has been previously described in linear chains [9,10].
A cross-over from “ordinary” to “extraordinary” SPP, a
phenomenon that was also described in these references, can
also be observed in Fig. 2 for prolate spheroids with ξ = 0.3,
ω = 0.30ωp and transverse incident polarization. Finally, we
note that the peculiar case of very slow decay, similar to those
predicted in Ref. [13], can be observed in the case of oblate
spheroids with ξ = 0.3.

The above behavior of SPPs is not surprising and has
been described previously in linear chains [9,10,13]. What
is new and interesting here are the phenomena occurring at the
vertex, where the amplitude of the SPP can either decrease
or increase sharply. For example, a sharp, almost steplike
increase of the amplitude is observed for spheres at the working
frequency ω = 0.36ωp (in both incident polarizations). These
abrupt changes of the amplitude are, essentially, complex
interference effects. The result of practical importance is that
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the SPP amplitude at the end of a corner-shaped chain can be
significantly larger than in a linear chain of the same overall
length.

Another interesting phenomenon that is not observed in
linear chains is polarization conversion. It has long been
known that diffraction gratings with broken symmetry can
facilitate conversion of polarization and that efficiency of this
conversion can be greatly enhanced by optical resonances [33].
Almost total conversion of linear polarization by a planar
periodic array of L-shaped gold micrometer-sized particles
was demonstrated for near-IR light in reflection [34]. The
above effects were described for broad-front plane waves. In
the case of curved plasmonic chains, we demonstrate polar-
ization conversion for the electromagnetic field of SPP, which
is localized in a subwavelength vicinity of a chain. Moreover,
the conversion characteristics are fairly flexible. Depending on
parameters, a linear polarization can be converted to a nearly
perfect circular polarization, or in some cases to a more general
elliptical polarization. Reliable linear-to-linear conversion

does not occur in corner chains for the parameters we have
considered (but can occur in smooth corners, see below). In
the case of oblate spheroids with ξ = 0.3, polarization state
experiences rapid fluctuations on the scale of about one chain
period. We finally note that the effect is reciprocal: an incident
circular polarization can be converted by the same chain to a
nearly linear polarization.

In the case of a smooth corner (Fig. 3), the effects are similar
except that the abrupt changes of the amplitude (which in this
case occur at the site where the straight segment is connected
to a circular segment) are not as dramatic as in the case of
sharp corners. In the case of semicircles (Fig. 4), the SPP
amplitude is, generally, a more smooth function of position
and does not exhibit abrupt jumps. An interesting observation
is that in the case of resonant excitation, a cross-over from
ordinary to extraordinary SPP occurs in quarter-circles just
like in linear chains, e.g., in prolate spheroids with ξ = 0.3,
ω = 0.36ωp and incident polarization along Y axis. Finally,
semi-circle chains allow in some cases for reliable linear-to-
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FIG. 3. (Color online) Same as in Fig. 2 but for a smooth corner.
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FIG. 4. (Color online) Same as in Fig. 2 but for a quarter-circle.

linear polarization conversion. For example, in the case of
spheres and ω = 0.36ωp, the incident linear polarization along
Y axis is smoothly converted to circular polarization close to
the middle of the chain and then to linear polarization along
X axis at the far end of the chain.

IV. ELECTRIC FIELD LOCALIZATION

We next consider field localization effects. The goal is
to show that there are cases when the electromagnetic field
associated with an SPP is tightly localized near curved chains
(for straight chains, this result is expected). To this end, we
have computed the intensity I defined by

I = |E|2/|E1|2 (15)

at the horizontal plane 10 nm above the top-most points of the
spheroids. Note that this plane is located at different heights
H above the z = 0 plane, depending on the spheroid shape.

Specifically, we have H = 18 nm for spheres and prolate
spheroids and H = 37 nm for oblate spheroids.

We start with the corner chains. In Fig. 5, we show several
density plots of I (x,y) for the most interesting cases, which
correspond to the chains built from spheroids with relatively
small values of aspect ratio and for the working frequency
that corresponds to relatively slow decay of SPPs. Note that
panel (d) corresponds to the working frequency ω = 0.10ωp–a
case that is not illustrated in Figs. 2–4 above. It can be seen
that better field localization and stable transmission is obtained
in the case of oblate spheroids. Scattering and energy leakage
at the vortex is insignificant in all cases considered. However,
the amplitude decay is very significant in the case of prolate
spheroids, so that it is not clear whether a signal can be reliably
detected near the end of such chains. (We note that decay in
chains made of prolate spheroids is not as significant in the
case of quarter-circle chains as is shown below.)

Localization of the electromagnetic field near smooth
corner chains is qualitatively similar (Fig. 6). There is visibly
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FIG. 5. Density plot of the normalized intensity I (x,y) for corner
shaped chains made from prolate (left) and oblate (right) spheroids
with the aspect ratio ξ = 0.3. The working frequency used is ω =
0.20ωp (a) and (b), ω = 0.36ωp (c), and ω = 0.10ωp (d). Incident
polarization along X axis (top) and along Y axis (bottom).

less scattering in this case, localization is somewhat stronger
and decay somewhat slower. However, the strongest field local-
ization is obtained in quarter-circle chains (Fig. 7), especially
in the case of oblate spheroids. Herein the localization and

FIG. 6. Same as in Fig. 5 but for smooth corner chains.

FIG. 7. Same as in Fig. 5 but for quarter-circle chains.

transmission properties are as good as in the case of straight
chains, e.g., as reported in Ref. [13].

V. CONCLUSIONS

We have found numerically that propagation of SPPs in
curved chains can be as stable and characterized by similarly
strong field localization as in the case of straight chains, as
long as the chain shape is smooth. In this case, there is almost
no energy leakage due to scattering, just as in the case of a
straight chain. This result can be explained by noting that a
smooth curved chain can be considered as locally linear, as
long as the curvature radius is large enough.

We have further found that SPPs experience much slower
decay in chains of spheroids than in similarly shaped chains
of nanospheres. The transmission efficiency of nanospheroid
chains is two orders of magnitude higher than it is for the
case of spheres. The most effective propagation of SPPs (and
the strongest field localization) is obtained in chains of oblate
spheroids with the aspect ratio ξ = b/a = 0.3. In this case,
SPPs decay quite insignificantly in very long curved chains,
e.g., we obtained for the normalized scalar Green’s function
FN � 0.8 for sufficiently low excitation frequency.

We finally note that curved chains can be used for efficient
and tunable polarization conversion. Linear-to-linear as well as
linear-to circular and circular-to-linear conversion is possible.

The physical effects considered in this paper can be
observed in near-field experiments with monochromatic or
quasi-monochromatic excitation, where polarization sensitiv-
ity can be achieved by various types of filters or the use of
asymmetric resonant nanoparticles as the near-field probes.
The field intensity maps can be observed with the use of
leakage radiation microscopy [20,21].
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